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a b s t r a c t

Nonparametric estimation of nonstationary velocity fields from 3D particle tracking
velocimetry data is considered. The velocities of tracer particles are computed from their
positions measured experimentally with random errors by high-speed cameras observing
turbulent flows in fluids. Thus captured discrete data is plugged into a smoothing spline
estimate which is used to estimate the velocity field at arbitrary points. The estimate
is further smoothed over several time frames using the fixed design kernel regression
estimate. Consistency of the resulting estimate is investigated. Its performance is validated
on the real data obtained by measuring a fluid flow of a liquid in a (rotating) square tank
agitated by an oscillating grid.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there has been tremendous progress in accurate and fast measurement techniques in fluid mechanics.
This resulted in a large amount of data; processing and interpretation of this data presently require the development of new
statistical tools.

In this article, we analyze data produced by the 3D Particle Tracking Velocimetry (3D-PTV); see, e.g., Raffel et al. (1998).
This technique allows visualization of a flow by recording the laser light scattered by naturally buoyant tracer particles
in a fluid and subsequently using it to determine positions of the particles in consecutive frames. To do this 3D-PTV fits
short trajectories of the particles to the observed pictures. These trajectories consist of approximately 20 time steps and are
modeled by cubic splines. From these trajectories, the estimates of the position and the velocity of the tracer particles are
derived (cf., e.g., Lüthi et al., 2005). Thus data is produced which contains positions of particles and corresponding values
of the fluid velocity field at these positions. This data contains two kinds of errors: first, errors due to measurement errors
for the locations of the tracer particles, and second, errors due to fitting of the trajectories to these locations of the tracer
particles. In this paper, we want to use this data to estimate the velocity field at arbitrary locations and times.

Experimental studies on estimation of velocity fields in turbulent flows have been carried out, among others, by Guala
et al. (2008), Kunnen et al. (2010), Lüthi et al. (2005), Messio et al. (2008) and Speetjens et al. (2004). These researchers used
kernel regression and local linear kernel regression estimates to smooth and interpolate the observed data. No theoretical
analysis of the estimates was provided.

Nonparametric regression estimation has been studied overmany years. Twomain approaches were developed: random
design approach and fixed design approach. The most popular estimates for the random design approach include kernel
regression estimate Nadaraya (1964, 1970), Watson (1964), Devroye and Wagner (1980), Stone (1977, 1982) and Devroye
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and Krzyżak (1989), partitioning regression estimate Györfi (1981), Beirlant and Györfi (1998), nearest neighbor regression
estimate Devroye (1982), Devroye et al. (1994), Mack (1981), Zhao (1987), and estimators based on orthogonal series and
those using Bernstein and Bernstein–Durrmeyer polynomials Rafajłowicz (1987) and Rafajłowicz and Rafajłowicz-Skubalska
(1999). The main theoretical results are summarized in the monograph Györfi et al. (2002). For the survey of fixed design
regression estimates, we refer to the monograph by Eubank (1999).

In this paper, we pose the problem of recovering velocity fields at arbitrary locations and times as a non-stationary
regression estimation problem with regression functions changing in time. The regression functions are estimated by
smoothing spline estimates which are subsequently smoothed in time domain using the fixed design kernel regression
estimate.

We prove consistency of the estimates and apply them to real data obtained from the 3D-PTV measuring a time-
dependent velocity field in a (rotating) water tank agitated by an oscillating grid.

2. Definition of the estimates

Let (Xt , Yt)(t ∈ [0, 1]) be Rd
× Rd-valued random vectors defined on the same probability space. Let the corresponding

time dependent d-dimensional velocity field

m : [0, 1] × Rd
→ Rd

be given by

m(t, x) = E{Yt |Xt = x},

and denote the distribution of Xt by µt . For N ∈ N we consider equidistant time points

tk = tk(N) =
k
N

(k = 0, . . . ,N)

and we assume that for each time point tk, we are given a velocity field sample

Dntk
= {(X (tk)

1 , Y (tk)
1 ), . . . , (X (tk)

ntk
, Y (tk)

ntk
)}.

Let k ∈ Nwith 2k > d and denote byW k(Rd) the Sobolev space containing all functions f : Rd
→ Rd where all derivatives of

total order k of all components are in L2(Rd). The condition 2k > d implies that the functions inW k(Rd) are continuous and
hence the evaluation of a function at a point is well defined. Let m(tk)

ntk
(·) = m(tk)

ntk
(·, Dntk

) be the smoothing spline estimate
ofm(tk, ·) defined by

m̃(tk)
ntk

(·) = arg min
f∈W k(Rd)


1
ntk

ntk
i=1

∥Y (tk)
i − f (X (tk)

i )∥2
2 + λtk · J2k (f )


(1)

where

J2k (f ) =


α1,...,αd∈N, α1+···+αd=k

k!
α1! · · · · · αd!


Rd

 ∂kf
∂xα1

1 · · · ∂xαd
d

(x)
2
2

dx, (2)

and by

m(tk)
ntk

(x) = TβN m̃
(tk)
ntk

(x) := max(min(m̃(tk)
ntk

(x), βN), −βN) (x ∈ Rd). (3)

Here ∥ · ∥2 denotes the Euclidean norm in Rd and the truncation level βN > 0 is a parameter of the estimate which we will
choose later such that βN → ∞(N → ∞).

Let l =


d + k − 1

d


and let φ1, . . . , φl be all monomials xα1

1 · · · · · xαd
d of total degree α1 + · · · + αd less than k. Define

R : R+ → R by

R(u) =


u2k−d

· log(u) if 2k − d is even,

u2k−d if 2k − d is odd,

where log(z) is the natural logarithm of z > 0. It follows from Section V in Duchon (1976) that there exists a function of the
form

m̃(tk)
ntk

(x) =

n
i=1

aiR(∥x − X (tk)
i ∥2) +

l
j=1

bjφj(x) (4)

which achieves the minimum in (1), and that the coefficients a1, . . . , an, b1, . . . , bl ∈ Rd of this function can be computed
by solving d linear systems of equations. Under some additional assumptions on the X (tk)

1 , . . . , X (tk)
n this is also shown in

Section 2.4 of Wahba (1990).
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