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a b s t r a c t

In this paper, we generalize the single-index models to the scenarios with random effects.
The introduction of the random effects raises interesting inferential challenges. Instead
of treating the variance matrix as the tuning parameters in the nonparametric model of
Gu and Ma (2005), we propose root-n consistent estimators for the variance components.
Furthermore, the single-index part in our model avoids the curse of dimensionality and
makes our model simpler. The variance components also cannot be treated as nuisance
parameters and are canceled in the estimation procedure likeWang et al. (2010). A new set
of estimating equationsmodified for the boundary effects is proposed to estimate the index
coefficients. The link function is estimated by using the local linear smoother. Asymptotic
normality is established for the proposed estimators. Also, the estimator of the link function
achieves optimal convergence rate. These results facilitate the construction of confidence
regions and hypothesis testing for the parameters of interest. Simulations show that our
methods work well for high-dimensional p.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Mixed effectsmodels arewidely used for the analysis of correlated data such as longitudinal data and repeatedmeasures.
The linear and nonlinear mixed effects models can be found in, for example, Harville (1977), Lindstrom and Bates (1990)
and Ke and Wang (2001). For cross-sectional data, Gu and Ma (2005) proposed the nonparametric mixed effects model

Y = η(X)+ ZTb + ε,

where the regression function η(x) is assumed to be a smooth function on a generic domain X. The model terms η(x)
was estimated using the penalized (unweighted) least squares method and the variance matrix, together with the tuning
parameterλ in spline smoothing, are treated as tuning parameters that are not estimated. Furthermore, when the dimension
of X is high, the ‘‘curse of dimensionality’’ will occur. To improve on these two aspects, we consider the single-index model
with random effects

Yij = g(XT
ij β0)+ ZT

ij bi + εij, i = 1, . . . , n, j = 1, . . . ,m, (1)

where β0 is a p × 1 index coefficients vector associated with the covariates Xij, the bi are independent q × 1 vectors of
random effects with mean 0 and covariance matrix D, g(·) is an unknown link function, εij’s are independent mean zero
random variables with variance σ 2

ε > 0. Here D is a positive definite matrix depending on a parameter vector φ; Xij and Yij
are the observable random variables, and Zij is a fixedmatrix. We assume bi and εij to be mutually independent. For the sake
of identifiability, it is often assumed that ∥β0∥ = 1 and the first nonzero component of β0 is positive, where ∥ · ∥ denotes
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the Euclidean metric. We address the general problem of estimating the parameter β0 and the function g(·) as well as the
variance components in D and σ 2

ε simultaneously.
The single-index model is an important tool in multivariate nonparametric regression, which can avoid the so-called

‘‘curse of dimensionality’’ by searching for a univariate index of the multivariate covariate X to capture important features
of high-dimensional data. The single-index models have been applied in a variety of fields, such as discrete choice analysis
in econometrics and dose-response models in biometrics (Härdle et al., 1993). In cross-sectional data, many authors have
studied the statistical inference problems for single-index models, and reported many results, for example, Li (1991),
Ichimura (1993), Xia and Li (1999), Naik and Tsai (2000), Hristache et al. (2001), Xia et al. (2002), Xia (2006) and Xue and
Zhu (2006). These reported methods have been proven to be useful and effective for independent data. On the other hand,
to our knowledge, a method to treat data with random effects, which are commonly seen in econometrics and biometrics,
is lacking in literature. In this paper, such models will be developed and reported.

There is already extensive literature on the generalized linear, nonparametric and semiparametricmethods for themixed
effects models, see, for example, Zeger and Diggle (1994), Ruckstuhl et al. (2000), Ke and Wang (2001), Wu and Zhang
(2002), Hall and Maiti (2006), Jiang (2007) and Field et al. (2008), among others. However, literature on the applications
of single-index models with random effects is limited. Honorá and Kyriazidou (2000) and Carro (2007) proposed some
estimating methods for dynamic panel data discrete choice models. Bai et al. (2009) studied the single-index models for
longitudinal data, where they proposed a procedure to estimate the single-index component and the link function based on
the combination of the penalized splines and quadratic inference functions. Liang and Zeger (1986) proposed an extension of
the generalized linear models and introduced the generalized estimating equations (GEEs) that gave consistent estimates of
the index coefficients and their variances under mild assumptions on the time dependence. The GEEs were derived without
specifying the joint distribution of a subject’s observations yet they reduced to the score equations formultivariate Gaussian
outcomes.

In this paper, we apply the idea of GEEs to the single-indexmodelswith randomeffects. To estimate the index coefficients
β0, we propose a new set of estimating equations which take the boundary effects and the constraint ∥β0∥ = 1 into
account. The estimators based on these estimating equations outperform previous ones, as summarized below. First, our
estimation procedure does not specify a form for both the distribution of the random effects and the joint distribution of the
repeatedmeasurements. Second, we introduce estimating equations that give a root-n consistent estimate of β0 underweak
assumptions on the joint distribution. In particular, the estimator of β0 has smaller asymptotic variance when compared to
the least squaresmethod proposed byHärdle et al. (1993), see, for exampleWang et al. (2010) and Cui et al. (2011). Third, we
construct the root-n consistent estimates of the variance components inD and σ 2

ε . It allows us to deal with further statistical
inferences such as the construction of confidence regions and hypothesis testing forβ0. Lastly, we also obtain the asymptotic
normality and the uniform convergence rate of the estimator of g(·). Our algorithm is numerically fast and stable.

The rest of the paper is organized as follows. In Section 2, we elaborate on the methodology. Section 3 presents the
asymptotic properties for all proposed estimators. Section 4 reports the results of simulation studies and one real example.
The proofs of the main theorems are relegated to the Appendix.

2. Estimation method

2.1. Estimations of the parametric and nonparametric components

In this section, we first focus on the estimation of the index coefficients β0. Let Yi = (Yi1, . . . , Yim)
T , Xi =

(Xi1, . . . , Xim)
T , Zi = (Zi1, . . . , Zim)T , εi = (εi1, . . . , εim)

T and G(Xiβ0) = (g(XT
i1β0), . . . , g(XT

imβ0))
T . Model (1) can be

represented as

Yi = G(Xiβ0)+ Zibi + εi, i = 1, . . . , n.

The model implies that the Yi are independent with E(Yi|Xi) = G(Xiβ0) and cov(Yi|Xi) = ZiDZT
i + σ 2

ε Im, where Im is the
m × m identity matrix. A naive idea to estimate β0 is to minimize

Rn(β) ≡
1
n

n
i=1

{Yi − G(Xiβ)}
TW (Xiβ)V−1

i {Yi − G(Xiβ)} (2)

for β with ∥β∥ = 1, where Vi = ZiDZT
i + σ 2

ε Im is the variance–covariace matrix, W (Xiβ) = diag{w(Xi1β), . . . , w(Ximβ)}
and w(·) is a bounded weight function with a bounded support Uw , which is introduced to control the boundary effects in
the estimations of g(·) and g ′(·), For simplicity and convenience, we assume thatw(·) is the indicator function on Uw .

However, in (2), the link function g , variance components φ in D and σ 2
ε are unknown and we cannot get β directly. We

will show in the next section that the variance components φ in D and σ 2
ε can be estimated at root-n rates and hence can

effectively be treated as known for the purpose of developing and analyzing estimators of β and g(·). We then propose an
alternating procedure to estimate β and g(·) iteratively.

If g is known, (2) is a restricted least squares problem because there is the constraint ∥β0∥ = 1 and the function g(XT
ij β)

does not have derivative at point β0. Wang et al. (2010) used the delete-one-component to transfer the restricted least
squares to the unrestricted least squares in the Euclidean space Rp−1. We also use this method, but note that they deal



Download English Version:

https://daneshyari.com/en/article/416467

Download Persian Version:

https://daneshyari.com/article/416467

Daneshyari.com

https://daneshyari.com/en/article/416467
https://daneshyari.com/article/416467
https://daneshyari.com

