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a b s t r a c t

A recursive algorithm is presented for the computation of the first-order and second-
order derivatives of the entropy of a periodic autoregressive process with respect to
the autocovariances. It is an extension of the periodic Levinson–Durbin algorithm. The
algorithm has been developed for use at one of the steps of an entropy maximization
method developed by the authors. Numerical examples of entropy maximization by that
method are given. An implementation of the algorithm is available as an R package.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The class of periodically correlated processes (pc processes) introduced by Gladishev (1961) is useful in many
applications; see Hurd and Miamee (2007) for a thorough exposition of the theory, Franses and Paap (2004) for economic
applications, Serpedin et al. (2005) for a comprehensive bibliography, and Hindrayanto et al. (2010) for state space
modelling.

The maximum entropy principle provides an appealing framework for the specification of complete models from partial
information. It was introduced to stationary time series by Burg in the influential works (Burg, 1975, 1967). Given a
contiguous set of autocovariances for lags 0, . . . , p, the maximum entropy solution is an autoregressive process of order p
with those autocovariances. In this case, the problem is linear, and the solution can be obtained by solving the Yule–Walker
equations with the Levinson–Durbin algorithm. This result holds in the multivariate case as well. A generalization to pc
processes has been obtained by Lambert-Lacroix (2005). Deep results on this and related problems have been obtained by
Alpay et al. (2001) and Castro and Girardin (2002). When the lags are not contiguous, the problem is, in general, non-linear,
but the solution is still an autoregression of order equal to the maximum specified lag. For univariate stationary processes,
the case of non-contiguous lags has been studied by Politis (1992) and Rozario and Papoulis (1987). Amethod for the solution
of themaximum entropy problem for pc processes in the case of general gap patterns has been developed in Boshnakov and
Lambert-Lacroix (2009).

The entropy rate is a very complicated function of the autocovariances. It is hardly possible to write down useful
expressions for it and its derivativeswith respect to the non-specified autocovariances for general gap patterns. The periodic
Levinson–Durbin algorithm (see Sakai (1982) or Lambert-Lacroix (2005)) can be used to calculate the entropy rate. For
gradient and Newton-type maximization methods, derivatives are also needed. In this paper, we develop recursions for the
first-order and second-order derivatives of the entropy rate.We give also numerical examples that illustrate the behaviour of
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our method. The R programs implementing the algorithm presented here and the maximum entropy method of Boshnakov
and Lambert-Lacroix (2009) are available as the R package pcme (Boshnakov and Lambert-Lacroix, 2009).

The paper is organized as follows. Section 2 presents some basic results about the entropy of pc processes. Section 3
gives the algorithm for the calculation of the gradient and the Hessian of the entropy. Numerical results illustrating the
maximization of the entropy are presented in Section 4. Positive semi-definite (p.s.d.) solutions are discussed in Section 5.

2. Maximum entropy for periodically correlated processes

Let N be the set of the non-negative integers. A zero-mean process {Xt , t ∈ N \ {0}} is periodically correlated of period T
if its autocovariance function R(u, v) = E{XuXv} is T -periodic, i.e.

R(u + T , v + T ) = R(u, v), for all (u, v) ∈ N2, (1)
(see Gladishev (1961), Hipel and McLeod (1994), and Hurd and Miamee (2007)). It is convenient to think about the
autocovariances in terms of the seasons t = 1, . . . , T and the lags k ∈ N. Each pair (u, v) ∈ N2 may be represented as
(u, v) = (mT+t,mT+t−k) for some t ∈ {1, . . . , T },m ∈ N, and integer k. From Eq. (1), it follows that R(mT+t,mT+t−k)
does not depend onm. So, we may introduce the notation

Rt(k) = R(mT + t,mT + t − k), t ∈ {1, . . . , T }, m ∈ N, k—integer.
Moreover, it is sufficient to consider Rt(k) for k ≥ 0. Indeed, if u−v = k < 0, i.e. v > u, then (v, u) = (m1T+s,m1T+s−|k|)
for some s ∈ {1, . . . , T }, and R(u, v) can be obtained from the identity R(u, v) = R(v, u) = Rs(|k|). Similar notation
is used by other authors; see Hipel and McLeod (1994). To illustrate this notation, consider a monthly pc process started
in January 2000. Let u = 13 (January 2001) and v = 11 (November 2000). Here, the period is T = 12 months,
(u, v) = (1 × 12 + 1, 1 × 12 + 1 − 2), and (v, u) = (0 × 12 + 11, 0 × 12 + 11 − (−2)). So, R(u, v) = R1(2) and
R(v, u) = R11(−2). On the other hand, R11(−2) = R(v, u) = R(u, v) = R1(2).

If t is one of the seasons, 1, . . . , T , and k is a non-negative integer lag, then (t, k) will be called a season–lag pair. The
T functions R1(·), . . . , RT (·), considered as functions on N, completely parameterize the second-order structure of the pc
process in the sense that for each (u, v) there is exactly one season–lag pair (t, k) such that R(u, v) = Rt(k) (if u ≥ v) or
R(u, v) = Rt(k) (if u < v). In other words, the doubly indexed sequence {Rt(k)}, t ∈ {1, . . . , T }, k ∈ N, enumerates the
autocovariances in a non-redundant way. An equivalent parameterization is given by the partial autocorrelations (pacfs)
{βt(k)}, t = 1, . . . , T , k ∈ N (see Lambert-Lacroix (2005) for details).

Let I be a set of season–lag pairs and K = {Rt(k)}(t,k)∈I be a sequence defined on I . Let Γ be the set of all periodic
autocovariance sequences whose values coincide with Rt(k) for (t, k) ∈ I (Γ may be empty). Each element of Γ is a
completion (or extension) of K . The maximum entropy extension is the one whose entropy rate is maximal in Γ . We refer
to the problem of finding the maximum entropy extension of a sequence K defined on a set of season–lag pairs I as the
ME(K , I) problem. A method for the solution of the ME(K , I) problem for arbitrary patterns of the set I has been developed
in Boshnakov and Lambert-Lacroix (2009). The method involves maximization of the entropy on season–lags sets of the
form

Ec(I) = {(t, k)|t = 1, . . . , T , k = 0, . . . , pt},
where (p1, . . . , pT ) are the smallest non-negative integers satisfying the constraints p1 ≤ pT + 1 and pt ≤ pt−1 + 1 for
t = 2, . . . , T , and such that Ec(I) ⊇ I . We refer to the elements of Ec(I) \ I as gaps since these are season–lag pairs with
non-specified values in K .

To give the entropy rate definition we need additional notation. Let {Xt} be a pc process, and let vt(k) be the variance of
the prediction error of Xt in terms of the k previous values Xt−1, . . . , Xt−k. Then for any given t ∈ {1, . . . , T } the sequence
{vmT+t(mT + t − 1)}∞m=1 is convergent asm → ∞, since it is monotonically decreasing and bounded from below by 0. Let

σ 2
t = lim

m→∞
vmT+t(mT + t − 1), t = 1, . . . , T . (2)

An expression for σ 2
t in terms of the partial autocorrelations is (see Lambert-Lacroix (2005))

σ 2
t = Rt(0)

∞∏
n=1

(1 − ‖βt(n)‖2), t = 1, . . . , T .

It can be shown (Iqelan, 2007, p. 119) that for a Gaussian not locally deterministic pc process X the entropy rate is equal to

h(X) =
1
2
log(2πe) +

1
2T

T−
t=1

log σ 2
t ,

where σ 2
t > 0 for t = 1, . . . , T . Since we are considering only second-order properties and the first term is a constant, we

can define the entropy rate of a pc process with autocovariance sequence R by

h(R) =
1
T

T−
t=1

log σ 2
t . (3)
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