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a b s t r a c t

In the context of linear state space models with known parameters, the Kalman filter (KF)
generates best linear unbiased predictions of the underlying states together with their
corresponding PredictionMean Square Errors (PMSE). However, in practice, when the filter
is run with the parameters substituted by consistent estimates, the corresponding PMSE
do not take into account the parameter uncertainty. Consequently, they underestimate
their true counterparts. In this paper, we propose two new bootstrap procedures to obtain
PMSE of the unobserved states designed to incorporate this latter uncertainty. We show
that the new bootstrap procedures have better finite sample properties than bootstrap
alternatives and than procedures based on the asymptotic approximation of the parameter
distribution. The proposed procedures are implemented for estimating the PMSE of several
key unobservable US macroeconomic variables as the output gap, the Non-accelerating
Inflation Rate of Unemployment (NAIRU), the long-run investment rate and the core
inflation. We show that taking into account the parameter uncertainty may change their
prediction intervals and, consequently, the conclusions about the utility of the NAIRU as a
macroeconomic indicator for expansions and recessions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

State spacemodels are very popular for describing the dynamic evolution of a large range of economic and financial time
series in which there are unobserved variables of interest; see, for example, Fernández-Villaverde et al. (2007) who propose
representing the equilibrium of an economic model using a state-space representation, Orphanides and van Norden (2002),
Doménech and Gómez (2006) and Proietti et al. (2007) for estimating the unobserved output gap in several economies and
Stock and Watson (2007) for a trend-cycle model with stochastic volatility fitted to US inflation, just to cite several recent
empirical applications.

One of the main attractiveness of state space models is that they allow the implementation of the Kalman filter and
smoothing algorithms which deliver estimates of the underlying states which, in the context of linear state space models
with known parameters, are best linear unbiased. The filters also deliver the corresponding prediction mean squared errors
(PMSE) which measure the uncertainty associated with the estimated states. However, in practice, the filter is run with
some parameters substituted by consistent estimates. In this case, the Kalman filter PMSE do not take into account the
additional uncertainty due to the parameter estimation. As a result, they underestimate the true PMSE and, consequently,
the uncertainty associatedwith the estimates of the underlying states; see among others, Ansley and Kohn (1986), Hamilton
(1986), Durbin and Koopman (2000) and Quenneville and Singh (2000).
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There are several procedures available in the literature to incorporate the parameter estimation uncertainty into the
Kalman filter PMSE. First, fully Bayesian methods generate distributions of the underlying states which in a natural way
incorporate the parameter uncertainty; see, for example, Carter andKohn (1994) andDurbin andKoopman (2002). However,
these procedures can be computationally complicated and time consuming in relatively largemodels; seeHarvey (2000) and
Quenneville and Singh (2000). Furthermore, they usually require particular assumptions about the conditional distribution
of the parameters and states. Alternatively, as proposed by Ansley and Kohn (1986), the PMSE of the estimated underlying
states can be computed by using theDeltamethod and the first twomoments of the asymptotic distribution of the parameter
estimator. There are also corrections of the Kalman filter PMSE based on theMonte Carlo integration of the distribution of the
parameter estimator which is approximated by the asymptotic distribution; see Hamilton (1986). However, the asymptotic
distribution can be a poor approximation to the finite sample distribution when the sample size is not large enough. Proietti
et al. (2007) implements the Hamilton (1986) and Ansley and Kohn (1986) procedures to obtain standard deviations of the
Euro area output gap that incorporate the parameter uncertainty. However, Quenneville and Singh (2000) show that these
two procedures miss terms of the same order as their proposed corrections. Consequently, they propose enhancements
of both procedures to estimate the PMSE based on second order approximations of the parameter distribution and show
that the corresponding reductions of the PMSE biases are relatively small. Kass and Steffey (1989) also propose a second
order approximationwhich is evenmore computationally demanding. To overcome these limitations, Quenneville and Singh
(2000) propose computing the PMSE of the underlying states by using the Monte Carlo integration of the distribution of the
parameter estimator where this distribution is approximated by the posterior distribution obtained in a Bayesian fashion.
Although their procedure reduces the biases in the PMSE, it is proposed in the context of a particular simplemodel, the local
level model, and can be computationally demanding for more general unobserved component models. Finally, Pfeffermann
and Tiller (2005) propose using bootstrap procedures to compute PMSE in the context of the Kalman filter. Bootstrap
procedures have the advantage of being computationally simple even in relatively complicated models. Furthermore, they
are robust against misspecification of the error distribution; see Wall and Stoffer (2002, 2004) and Rodríguez and Ruiz
(2009) for their implementation to obtain the prediction distribution of future values of the observed variables. However,
the bootstrap PMSE proposed by Pfeffermann and Tiller (2005) are designed to obtain unconditional PMSE of the estimates
of the underlying states. The distinction between conditional and unconditional PMSE could be important in time-varying
state spacemodels with estimated parameters; see Ansley and Kohn (1986) for arguments in favor of computing conditional
PMSE.

Consequently, in this paper, we propose two new bootstrap procedures to obtain conditional PMSE of the Kalman filter
estimates of the unobserved states that incorporate the parameter uncertainty. Following, Hamilton (1986) and Quenneville
and Singh (2000), the new procedures are based on the Monte Carlo integration of the distribution of the parameter
estimator, but instead of approximating this distribution by the asymptotic or posterior distributions, we propose to
approximate it by a bootstrap distribution; see Stoffer andWall (1991) for the bootstrap approximation of the distribution of
theMaximum Likelihood (ML) estimator of the parameters in state spacemodels. The first procedure proposed in this paper
is parametric in the sense that it is based on resampling from the assumed distribution of the errors. The second procedure
is based on resampling from the residuals of the estimated model and consequently, it does not assume any particular error
distribution. We carry out Monte Carlo experiments to analyze the finite sample performance of our procedures which is
compared with that of alternative procedures. We show that the biases of the PMSE proposed in this paper are smaller
than those of the asymptotic procedures of Hamilton (1986) and the bootstrap PMSE procedure of Pfeffermann and Tiller
(2005). The results are illustrated with simulated and real data highlighting the importance of incorporating the parameter
uncertainty in empirical applications.

The rest of the paper is organized as follows. Section 2 describes the Kalman filter and illustrates with simulated data
the biases incurred when estimating the PMSE of the estimated underlying states by running the filter with estimated
parameters. We also briefly describe the asymptotic procedure of Hamilton (1986) and the bootstrap procedures proposed
by Pfeffermann and Tiller (2005) to overcome these biases. In Section 3, we propose two new bootstrap procedures to obtain
PMSE of the one-step-ahead estimator of the unobserved states that take into account the parameter uncertainty. Their
finite sample properties are analyzed and comparedwith those of the standard Kalman filter, the asymptotic and previously
available bootstrap PMSE. Section 4 contains an empirical application in which we estimate the uncertainty associated with
the unobserved quarterly output gap, Non-Accelerating Inflation Rate of Unemployment (NAIRU), investment rate and core
inflation in the US. Finally, Section 5 concludes the paper.

2. PMSE of Kalman filter estimates of states

Consider the following state space model

Yt = Ztαt + dt + R1tεt , (1a)
αt = Ttαt−1 + ct + R2tηt , t = 1, . . . , T , (1b)

where Yt is an N ×1 vector time series observed at time t, αt is them×1 vector of unobservable state variables, εt is a k×1
vector of independent white noise processes with zero mean and covariance matrix Ht and ηt is a g × 1 vector of serially
uncorrelated disturbances with zero mean and covariance matrix Qt . The disturbances εt and ηt are uncorrelated with each
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