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a b s t r a c t

The mean–variance theory of Markowitz (1952) indicates that large investment portfolios
naturally provide better risk diversification than small ones. However, due to parameter
estimation errors, one may find ambiguous results in practice. Hence, it is essential to
identify relevant stocks to alleviate the impact of estimation error in portfolio selection. To
this end,we propose a linkage condition to link the relevant and irrelevant stock returns via
their conditional regression relationship. Subsequently, we obtain a BIC selection criterion
that enables us to identify relevant stocks consistently. Numerical studies indicate that BIC
outperforms commonly used portfolio strategies in the literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In financial risk analysis, Markowitz (1952) proposed mean–variance portfolio selection, and this landmark study
earned him the 1990 Nobel Prize in Economic Sciences shared with Merton Miller and William Sharpe. Since then, risk
diversification has become an increasingly important tool for analyzing investments; see for example, Jagannathan and Ma
(2003) and DeMiguel et al. (2009a,b). This topic is particularly relevant given the current financial market turbulence, which
motivates us to study portfolio selection.

In his seminal mean–variance theory, Markowitz (1952) uses two parameters to characterize a portfolio’s performance:
expected return and variance (i.e., risk). The investor, therefore, commonly optimizes his/her investment portfolio with
an appropriate trade-off between expected return and risk. Because investors have different risk attitudes, the number
of potentially optimal portfolios could be large. Among various optimal portfolios, the one with minimal variance is of
particular interest for two reasons. First, the minimum-risk portfolio could be attractive to those investors with strong
risk aversion characteristics (e.g., governments, pension funds). Second, although the criterion is minimal risk, the actual
return remains competitive; see Jagannathan andMa (2003) and DeMiguel et al. (2009a,b). This is because it is considerably
more difficult to accurately estimate the mean of a stock’s return than its variance; see Jorion (1986) and Jagannathan and
Ma (2003). Testing a portfolio’s mean–variance spanning is, therefore, important (Huberman and Kandel, 1987), and many
researchers advocate for the minimal risk criterion in portfolio selection (Jagannathan and Ma, 2003).

To effectively employ the minimum-risk criterion in practice, one needs to accurately estimate covariance matrices.
FollowingMarkowitz (1952), diversification can reduce the overall risk of an investment portfolio, and this strategy naturally
leads us to favor larger portfolios. However, this notion induces high-dimension covariance matrices, which are difficult to
estimate accurately; see Bickel and Levina (2008) and Rothman et al. (2009). Furthermore, past empirical evidence suggests
that the sampling error in the covariance estimation process can significantly deteriorate a portfolio’s out-of-sample
performance. Moreover, estimation errors also lead to considerable portfolio instability. Accordingly, portfolio weights need
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to be adjusted frequently and appreciably, which yields non-negligible transaction costs. Hence, a good strategy should take
into account estimation errors.

In the past decade, some empirical researchers (Goetzmann and Kumar, 2001; Polkovnichenko, 2003; Statman, 2004)
have found that investors tend not to hold many stocks in their portfolios; average portfolio size is 3 or 4 stocks. From
statistical consideration, this finding is sensible since a smaller portfolio size requires a fewer number of unknown
parameters to be estimated. This in turn reduces the estimation instability and subsequently brings down the transaction or
holding cost (Statman, 2004). These findingsmotivate us to consider alleviating the estimation error effect by controlling the
size of the portfolio. To this end, we define relevant stocks (i.e., stocks that must be included in the portfolio) and irrelevant
stocks (i.e., stocks that cannot provide any additional risk reduction given the existing relevant stocks). The optimal portfolio
is established by choosing relevant stocks that balance diversification and estimation error. Therefore, the aim of this paper
is to develop a selection criterion that enables us to consistently differentiate relevant and irrelevant stocks.

The rest of the article is organized as follows. Section 2 defines relevant and irrelevant stocks and proposes a linkage
condition to link the relevant and irrelevant stock returns via their conditional regression relationship. Accordingly,
we obtain the Bayesian information criterion (BIC) and demonstrate its consistency (i.e., the capability to consistently
differentiate relevant and irrelevant stocks). Section 3 presents numerical examples including Monte Carlo studies and an
empirical analysis. The article concludes with a brief discussion in Section 4. All technical details are left to Appendix.

2. Bayesian information criterion

2.1. Relevant and irrelevant stocks

Let Xtj (1 ≤ j ≤ d) be the return of the jth stock observed at time t and Xt = (Xt1, . . . , Xtd)
⊤

∈ Rd, where d is the
number of candidate stocks. We further assume that the Xt ’s are independent and identically distributed random variables
with E(Xt) = 0 and cov(Xt) = Σ for t = 1, . . . , n. To minimize the portfolio variance, one needs to find an optimal weight
vector ω = (ω1, . . . , ωd)

⊤
∈ Rd, such that the variance var(ω⊤Xt) = ω⊤Σω can be minimized under the constraint

ω⊤1 = 1, where 1 = (1, 1, . . . , 1)⊤ ∈ Rd. It has been shown that the optimal solution to this minimization problem
is ω0 = (ω01, . . . , ω0d)

⊤
= Σ−11{1⊤Σ−11}−1; see for example, Ledoit and Wolf (2003). To assess the out-of-sample

performance, we consider X0 ∈ Rd to be an independent copy of Xt . Then, the resulting portfolio’s out-of-sample variance
is var(ω⊤

0 X0) = (1⊤Σ−11)−1.
For the sake of convenience, we introduce generic notation S = {j1, . . . , jd̃} to represent the portfolio that includes the

j1th, j2th, . . . , jd̃th stocks. We denote its size as |S| = d̃. Let SF = {1, 2, . . . , d} be the full-size portfolio that contains all
candidate stocks. In addition, for any d-dimensional vector β ∈ Rd and d × d matrix Ω ∈ Rd×d, let β(S) and Ω(S) represent
their corresponding sub-vector and sub-matrix. Accordingly, the return vector of the portfolio S at time t and its covariance
matrix are given by Xt(S) = (Xtj : j ∈ S)⊤ ∈ R|S| and Σ(S) = (σj1j2)j1,j2∈S ∈ R|S|×|S|, respectively. Moreover, for any
two portfolios Sa and Sb, we use the notation Σ(Sa,Sb) to represent the sub-matrix of Σ , where its rows and columns are
determined by Sa and Sb, correspondingly. For example, let Σ̂ = n−1∑ XtX⊤

t = n−1(X⊤X) be the sample covariance
matrix of the full-size portfolio SF , where X = (X1, . . . , Xn)

⊤. Then, Σ̂(Sa,Sb) = (σ̂j1j2 : j1 ∈ Sa, j2 ∈ Sb) ∈ R|Sa|×|Sb| is the
sample covariance between Sa and Sb. The difference between the subscript with parentheses and without parentheses is
noteworthy. For example, ω0(S) denotes a sub-vector of ω0 ∈ Rd, where ω0 is the optimal weight vector associated with the
full-size portfolio SF . On the other hand, ω0S = {Σ−1

(S)1(S)}{1⊤

(S)Σ
−1
(S)1(S)}

−1 is the optimal weight vector computed via the
portfolio S only, which leads to ω0 = ω0SF .

Inspired bymean–variance spanning theory (Huberman and Kandel, 1987; Gibbons et al., 1989; Kan and Zhou, 2001), we
next define a stock to be relevant (irrelevant) if its corresponding weight inω0 is non-zero (zero). Then the optimal portfolio
is S0 = {j : ω0j ≠ 0} with size d0 = |S0|, while its complement is Sc

0 = SF \ S0 with size |Sc
0| = d − d0. Although the

relevant and irrelevant stocks are clearly defined, they are not directly useful for constructing the likelihood function of the
portfolio. This is because the conditional regression relationship between the relevant and irrelevant stocks is not explicitly
specified. To this end, we obtain the following theorem, whose detailed technical proof can be found in Appendix A.1.

Theorem 1. Assume that Xt follows a multivariate normal distribution for t = 1, . . . , n. Then, a necessary and sufficient
condition for S ⊃ S0 is that, for any k ∉ S, we have

∑
j∈S βkj = 1, where βkj are regression coefficients of Xtk on {Xtj, j ∈ S}.

The above theorem indicates that the condition
∑

j∈S βkj = 1 is crucial in determining whether S ⊃ S0. To further
understand this condition, we present an insightful discussion below. For an arbitrary portfolio S and any given stock k ∉ S,
we have

Xtk =

−
j∈S

Xtjβkj + εtk, (2.1)

where (2.1) is stated in Appendix A.1 for the proof of Theorem 1. It is noteworthy that the error term εtk is assumed to
be independent of Xtj for j ∈ S, and that such an assumption is crucial for the implementation of our proposed method.
Similar assumption has been used in themean–variance spanning literature; see for example Huberman and Kandel (1987).
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