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a b s t r a c t

The aim of this paper is to provide a composite likelihood approach to handle spatially cor-
related survival data using pairwise joint distributions. With e-commerce data, a recent
question of interest in marketing research has been to describe spatially clustered pur-
chasing behavior and to assess whether geographic distance is the appropriate metric to
describe purchasing dependence. We present a model for the dependence structure
of time-to-event data subject to spatial dependence to characterize purchasing be-
havior from the motivating example from e-commerce data. We assume the Farlie–
Gumbel–Morgenstern (FGM) distribution and then model the dependence parameter as
a function of geographic and demographic pairwise distances. For estimation of the de-
pendence parameters, we present pairwise composite likelihood equations. We prove that
the resulting estimators exhibit key properties of consistency and asymptotic normality
under certain regularity conditions in the increasing-domain framework of spatial asymp-
totic theory.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate time-to-event data are subject to spatial correlation in familial and multicenter clinical trials in biomedical
sciences, region-wide disease studies in epidemiology and e-commerce studies in marketing (Li and Lin, 2006; Henderson
et al., 2002; Li and Ryan, 2002; Banerjee et al., 2003). The practical interest lies in the dependence between the survival
outcomes in the geographic domain of interest. In standard geo-statistical practice, the variance and correlation structure of
uncensored data are modeled through a parametric covariance function and the parameters are estimated by maximum
likelihood (Cressie, 1993). The estimation of parameters poses a challenge, since using a full likelihood approach is
computationally burdensome due to high-dimensional integrals. An added challenge in the analysis of time-to-event data
prone to spatial correlation is the presence of censoring.

Two widely used methods in modeling associations between failure times are frailty and copula models. Nielsen et al.
(1992), Klein (1992),Murphy (1995, 1996), and Parner (1998) investigated the estimation and inference for the frailtymodel.
A comprehensive review can be found in Andersen et al. (1993) and Hougaard (2000). The frailty model-based approach is
appealing for family studies since it accommodates the dependencies among relatives by assuming a shared frailty (Parner,
1998; Bandeen-Roche and Liang, 1996; Hsu and Gorfine, 2006). Models developed for clustered data may not fully allow for
spatially correlated data. Motivated by a study of asthma onset in Boston, Li and Ryan (2002) used an extended frailty model
to take into account the spatial correlation structure. Henderson et al. (2002) investigated survival of leukemia in northwest
England by using a multivariate gamma frailty model with a covariance structure allowing for spatial effects.

Genest and MacKay (1986), Oakes (1989) and Shih and Louis (1995) modeled the association of bivariate failure times
using copula functions. An attractive feature of the copula model is that the margins do not depend on the choice of the
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dependency structure. As a result, one can model and estimate the dependency and margins separately. In a multivariate
setting, Li and Lin (2006) developed a method for analyzing survival data correlated in a region by specifying a multivariate
normal copula and allowing for a spatial correlation structure in the parameters. They provided an estimating equation
approach, avoiding the full likelihood that can be intractable when spatially correlated survival outcomes are involved.

Composite likelihood as proposed in Lindsay (1998) is convenient in the setting where the full likelihood is difficult
to construct. Earlier, Besag (1974) considered a similar approach for spatial data. Cox and Reid (2004) provided a
general framework for the composite likelihood approach to inference. Composite likelihood methods have been used in
multivariate analysis of various types such as non-normal spatial data (Heagerty and Lele, 1998; Varin et al., 2005) and binary
correlated data (LeCessie and Van Houwelingen, 1994; Kuk and Nott, 2000). Kuk (2007) considered a weighted composite
likelihood for clustered data. Varin (2008) provided a survey of composite likelihood applications.

For survival data, the composite likelihood approach has been used in the analysis of clustered data in familial
studies. Parner (2001) modeled the marginal distribution of pairs of failure times using shared frailty models and
constructed a pseudo log-likelihood function by adding the pairwise likelihood contributions. Andersen (2004) specified
joint survivor functions with copula models and estimated the marginal hazard and association parameters via composite
likelihood. Tibaldi et al. (2004a,b) considered composite marginal likelihood inference for multivariate survival data using
a Plackett–Dale (Plackett, 1965) model. For estimation, Zhao and Joe (2005) considered a two-stage approach and proposed
the use in a multivariate setting in frailty and copula models. These methods are not suited for spatial correlation among
the observations since they assume clusters to be independent.

The methodology in this paper is motivated by a problem in e-commerce data, where marketing research has generated
much interest in ascertaining whether there is any spatial clustering in purchasing behavior among new customers (Bell
and Song, 2007; Bradlow et al., 2005). We present a model for the dependence structure of failure times subject to spatial
correlation. We use the Farlie–Gumbel–Morgenstern bivariate family as the survivor function. In order to address the
question whether the spatial clustering of purchasing behavior depends on only geographical distances, we model the
dependence parameter as a function of Euclidean distances and other pairwise distances. To estimate parameters, we follow
a composite likelihood approach for the analysis of spatially correlated survival data. Following Cox and Reid (2004), we use
a univariate marginal likelihood to estimate parameters in the hazard function and pairwise composite likelihood for the
dependence parameters. The resulting pairwise composite likelihood has a convenient form. We consider the case in which
the marginal distribution of failure times follows the parametric Weibull family or the Cox proportional hazards model.
We use a two-stage estimation procedure to estimate parameters from the marginal likelihood and then use composite
likelihood to estimate dependence parameters. We prove that the resulting estimators exhibit key properties of consistency
and asymptotic normality under certain regularity conditions in the increasing-domain spatial asymptotic framework.

In Section 2 we present the model and we present the estimation procedure of composite likelihood along with the
asymptotic properties of the estimators. In Section 3 we discuss an application to a marketing study of e-commerce data
and conclude with final remarks in Section 4.

2. Method

2.1. Notation and model

In a spatial region of interest, consider a total of n subjects who are followed up to failure or censoring. Let T be the failure
time and C the censoring time. Let Z be a p-vector of covariates. Conditional on Z, T and C are assumed to be independent.
Let (Ti, Ci, Zi, i = 1, . . . , n) be n copies of (T , C, Z). For the ith subject, one can only observe (Ti, Zi, δi, i = 1, . . . , n) whereTi = min(Ti, Ci) and δi = 1(Ti ≤ Ci). Denote by λ0(t) the baseline hazard function and Λ0(t) =

 t
0 λ0(s)ds the baseline

cumulative hazard function. Let Λi(t) denote the cumulative hazard function, and let β be a p-dimensional regression
coefficient vector. In addition to the covariates, each subject’s geographic coordinates (latitude and longitude) are observed.
We are interested in themarginal effect of the covariate vector Z on the hazard function as well as the dependence structure
among failure times.

A first step towards modeling the dependence structure is to model pairwise joint distributions. We propose using the
Farlie–Gumbel–Morgenstern (FGM) family of distributions (Morgenstern, 1956; Gumbel, 1960; Farlie, 1960), given by

Fij(ti, tj) = Fi(ti)Fj(tj)[1 + ξij{1 − Fi(ti)}{1 − Fj(tj)}],

where Fi(ti) is the marginal survival function of Ti, and Fij(ti, tj) = P(Ti ⩾ ti, Tj ⩾ tj). There is a restriction on ξij such that
0 ≤ |ξij| ≤ 1. The parameter ξij can be viewed as a measure of dependence. We consider the case in which the marginals
follow the Weibull family Fi(ti) = exp[−tγi exp(α + β ′Zi)].

To parameterize the bivariate joint distribution, it suffices to parameterize ξij and the univariate marginal survival
functions Fi(ti). To this end, we propose that the dependence parameter ξij is itself a function of geographic distance as
well as other arbitrary pairwise distances. Specifically, let ξij = ξij(ψ;wij), where wij could include the Euclidean distance
and certain pairwise characteristics and ψ is a vector of parameters to be estimated.

Specifically, let dij be the Euclidean distance between the spatial locations of subjects i and j, where dii = 0 by definition,
and zij is a function of demographic variables for units i and j, e.g. an indicator of whether subjects i and j reside in
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