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a b s t r a c t

Several methods have recently been proposed in the ultra-high frequency financial
literature to remove the effects of microstructure noise and to obtain consistent estimates
of the integrated volatility (IV) as a measure of ex post daily volatility. Even bias-corrected
and consistent realized volatility (RV) estimates of IV can contain residual microstructure
noise and othermeasurement errors. Such noise is called ‘‘realized volatility error’’. As such
errors are ignored, we need to take account of them in estimating and forecasting IV. This
paper investigates through Monte Carlo simulations the effects of RV errors on estimating
and forecasting IV with RV data. It is found that: (i) neglecting RV errors can lead to serious
bias in estimators; (ii) the effects of RV errors on one-step-ahead forecasts are minor when
consistent estimators are used and when the number of intraday observations is large;
(iii) even the partially corrected R2 recently proposed in the literature should be fully
corrected for evaluating forecasts. This paper proposes a full correction of R2. An empirical
example for S&P 500 data is used to demonstrate the techniques developed in this paper.

© 2011 Published by Elsevier B.V.

1. Introduction

Given the rapid growth in financial markets and the continual development of new and more complex financial
instruments, there is an ever-growing need for theoretical and empirical knowledge of volatility in financial time series.

There is, however, an inherent problem in usingmodels where the volatilitymeasure plays a central role. The conditional
variance is latent, and hence is not directly observable. It can be estimated, among other approaches, by the (Generalized)
Autoregressive ConditionalHeteroskedasticity, or (G)ARCH, family ofmodels proposed by Engle (1982) andBollerslev (1986)
or stochastic volatility (SV) models (see, for example, Taylor, 1986). McAleer (2005) provides an exposition of a wide range
of volatility models, and Asai et al. (2006) provides a review of the growing literature on multivariate SV models.

More recently, Andersen and Bollerslev (1998) have showed that ex post daily volatility is best measured by aggregating
288 squared five-minute returns. The five-minute frequency was suggested as a trade-off between accuracy, which is
theoretically optimized using the highest possible frequency, and microstructure noise that can arise through the bid-ask
bounce, asynchronous trading, infrequent trading, and price discreteness, among other factors.

✩ The authors are grateful toMarcel Scharth for efficient research assistance, and to an associate editor and two anonymous referees for helpful comments
and suggestions. For financial support, the first author acknowledges the Japan Society for the Promotion of Science and the Australian Academy of Science,
the second author acknowledges the Australian Research Council, the National Science Council, Taiwan, and the Japan Society for the Promotion of Science,
and the third author wishes to acknowledge CNPq, Brazil.
∗ Corresponding author. Tel.: +55 21 3527 1078; fax: +55 21 3527 1084.

E-mail address:mcm@econ.puc-rio.br (M.C. Medeiros).

0167-9473/$ – see front matter© 2011 Published by Elsevier B.V.
doi:10.1016/j.csda.2011.06.024

http://dx.doi.org/10.1016/j.csda.2011.06.024
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:mcm@econ.puc-rio.br
http://dx.doi.org/10.1016/j.csda.2011.06.024


218 M. Asai et al. / Computational Statistics and Data Analysis 56 (2012) 217–230

Ignoring the remaining measurement error, the ex post volatility essentially becomes ‘‘observable’’, and hence can be
modelled directly, rather than being treated as a latent variable. Based on the theoretical results of Barndorff-Nielsen and
Shephard (2002), Andersen et al. (2003) and Meddahi (2002), several recent studies have documented the properties of
realized volatility constructed from high frequency data. However, it is well known that neglecting microstructure noise in
calculating realized volatility (RV) can lead to biased and inconsistent estimates of integrated volatility (IV) as a truemeasure
of daily volatility.

Several methods have recently been proposed in the ultra-high frequency financial literature to remove the effects of
microstructure noise and to obtain consistent estimates of the IV (see Barndorff-Nielsen et al. (2008), Hansen et al., 2008,
and Zhang et al. 2005). For an extensive review of the realized volatility literature, see McAleer and Medeiros (2008a) and
Bandi and Russell (2007).

Nevertheless, even bias-corrected and consistent realized volatility estimates of the IV can contain residual
microstructure noise and other measurement errors that should not be ignored. Furthermore, the consistency of the above-
mentioned estimators is derived under some (strong) assumptions about themicrostructure noise.Whenever some of these
assumptions are not met in practice, the estimators turn to be inconsistent. Finally, if the number of intraday observations
is small (due to illiquidity effects or data availability), the remaining measurement error may not be negligible. Barndorff-
Nielsen and Shephard (2002) refer to such remaining noise as the ‘‘realized volatility (RV) errors’’. They suggested a method
to estimate the continuous-time SV model, in which volatility follows a non-Gaussian Ornstein–Uhlenbeck (OU) process
(see also Corradi and Distaso (2006) for a discussion of measurement errors and realized volatility).

The contribution of this paper is two-fold. First, we extend Barndorff-Nielsen and Shephard’s (2002) approach and
estimate three differentmodels of IV. The common features between Barndorff-Nielsen and Shephard (2002) and the current
paper is the use of state space representation to remove such RV errors. This paper deals with discrete-time SV models, in
which the logarithmof IV follows aK -componentmodel, a longmemorymodel (ARFIMA), or a heterogeneous autoregressive
(HAR) model. Our K -component model corresponds to the continuous-time SV model of Chernov et al. (2003). Monte Carlo
simulation experiments are presented to investigate the effects of the RV errors on the estimators and forecasts of these
three models. Second, we show that, in the presence of RV errors, the R2 correction proposed by Andersen et al. (2005) is
only a partial correction.We provide a corrected R2 measure inMincer–Zarnowitz regressions when the dependent variable
is a noisy RV measure.

An empirical example is used to show that neglecting the RV error can lead to serious bias in estimating IV, and that the
new method can eliminate the effects of the errors. Finally, the fully corrected R2 proposed in this paper is needed in most
cases.

The plan of the remainder of the paper is as follows. Section 2 discusses the effects of RV error on estimating and
forecasting IV. Section 3 presents the results of Monte Carlo simulation experiments regarding the effects of RV error, using
the K -component, long memory and HAR models. Section 4 proposes a new method to fully correct R2 in the presence of
RV error. The results of an empirical example are analysed in Section 5. Some concluding remarks are given in Section 6.

2. Realized volatility and the significance of measurement errors

Suppose that, along day t , the logarithmic prices of a given asset follow a continuous-time diffusion process:

dp(t + τ) = µ(t + τ)dτ + σ(t + τ)dW (t + τ), 0 ≤ τ ≤ 1, t = 1, 2, . . . ,

where p(t+τ) is the logarithmic price at time t+τ , µ(t+τ) is the drift component, σ(t+τ) is the instantaneous volatility
(or standard deviation), and W (t + τ) is a standard Brownian motion. In addition, suppose that σ(t + τ) is orthogonal to
W (t + τ), such that there is no leverage effect. This assumption is standard in the realized volatility literature.

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002) showed that daily returns, defined as rt = p(t) −

p(t −1), are Gaussian conditionally on ℑt ≡ ℑ {µ(t + τ − 1), σ (t + τ − 1)}τ=1
τ=0, the σ -algebra (information set) generated

by the sample paths of µ(t + τ − 1) and σ(t + τ − 1), 0 ≤ τ ≤ 1, such that

rt |ℑt ∼ N
∫ 1

0
µ(t + τ − 1)dτ ,

∫ 1

0
σ 2(t + τ − 1)dτ


.

The term IV2
t =

 1
0 σ 2(t + τ − 1)dτ is known as the integrated variance, which is a measure of the day-t ex post volatility.

The integrated variance is typically the object of interest as a measure of the true daily volatility.
In general, σ (t + τ), or a function of σ (t + τ) such as σ 2 (t + τ) or ln σ 2 (t + τ), is assumed to follow a continuous-

time diffusion process (see Ghysels et al. (1996) for example). Integrating on τ , the Brownianmotion of the diffusion process
becomes a Gaussian variable, such that the integrated variance is a random variable. In this sense, IV2

t plays the same role
as the stochastic variance in the class of ‘‘Stochastic Volatility (SV)’’ models. From this viewpoint, the connections among
the integrated variance, stochastic variance, and conditional variance are clear. As shown by Nelson (1990), conditional
variance models are approximations to continuous-time SVmodels. In the conditional variance model, the current variance
is determined by past information sets, indicating that the approximation can be improved. Usually, continuous-time SV
models are approximated by the Euler–Maruyama method, and the resulting models are called ‘‘discrete-time’’ SV models.
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