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1. Introduction

In many fields of science, for instance bio-informatics, chemometrics and environmetrics, a frequently occurring problem
is to estimate a regression relation between a predictand matrix Y € $R"*? (or y if the predictand is univariate; most
applications of PCR concern univariate regression) and a predictor data matrix X € R"*P. At the normal distribution, the
optimal solution to this problem is to use the least squares estimator. However, in these fields of science, the predictor data
matrix X contains correlated columns, or its number of variables exceeds (sometimes vastly) the number of cases, such
that the least squares regression estimator cannot be computed. There are plenty of ways to tackle this problem so as to
obtain reliable regression estimates for such data have been proposed in the literature. One of these is principal component
regression (Jolliffe, 1986). Principal component regression (PCR) is based on the following idea: instead of using the original
high dimensional regressor block, use the principal component scores (T) of this block as regressors. Because the principal
components (P) are by definition uncorrelated, the problem of multicollinearity in X is countered. Moreover, the principal
components p; are defined according to the following maximisation criterion:

p; = argmax {var(Xa)} i=1,...,p (1a)

acRP

under the constraints that
Ipill =1 and cov(Xp;, Xp;)) =0 forj <i. (1b)

The principal components are directions in space along which the maximum of variance is observed in that subspace of the
p-dimensional space not yet spanned by the previous principal components. If ordered according to a decrease in captured
variance, it is viable to assume that the first few principal components contain the majority of the information from X. Thus,
a low number (h) of principal components can suffice in order to capture the most information from X and thus to build a
satisfactory regression model. In practice, virtually always h < min(n, p). Hence, using principal components as regressors,
one also counters the problem of high dimensionality of the data.
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Principal component regression is a powerful regression tool, popular in several fields of application, like chemometrics.
However, the applicability of PCR is based on the assumption of normality. The principal components are defined according
to the maximisation of classical variance (the squared classical standard deviation) (1a), which is an optimal estimator of
scale at the normal distribution. The same remark holds for the least squares regression estimator used after estimation of the
principal components. For data deviating from normality, such as a normal contaminated with outliers, principal component
regression may become unreliable (depending on the type of non-normality). Especially in the case when outliers are present
in the data, principal component regression yields erroneous results. For these reasons, several robust alternatives for PCR
have been proposed (Walczak and Massart, 1995; Hubert and Verboven, 2003; Zhang et al., 2003; Serneels et al., 2005). The
pros and cons of these methods will be discussed in Section 3.

Another problem arising in practice is that data are sometimes incomplete. Data can be missing due to different reasons.
In what follows we will assume that the reason why a data point is missing is not related to its actual value, i.e. the data are
missing at random (MAR) in the sense of Rubin (1976). Principal component regression, nor its robust counterparts, can deal
with incomplete data sets. For classical principal components regression, a straightforward way to extend it to incomplete
data would be to use a PCA estimator which can deal with missing data and then perform regression on the estimated
principal components. There are several ways in which missing values can be imputed; up till now the only one that has
been extended to PCA for high dimensional data, is up to our knowledge, the expectation-maximisation (EM) approach. An
algorithm for PCA which can use incomplete data by virtue of EM, has been proposed by Walczak and Massart (2001).

Because the method proposed by Walczak and Massart (2001) is limited to classical PCA, which implies that it is
non-robust, it may yield unreliable results if, apart from the missing elements, the data contain outliers as well. Roughly
speaking, this problem can be quite easily circumvented by using either a robust PCA algorithm or a robust estimator for
the variance-covariance matrix within the EM algorithm. This combination is referred to as expectation robust PCA (ER-
PCA). A preliminary version ER-PCA, based on the spherical PCA estimator (Locantore et al., 1998), has first been proposed
by Stanimirova et al. (2007). A more elaborate study introducing and comparing the two different approaches (using a
robust PCA plug-in or based on an ER covariance matrix) as well as comparing different plug-in estimators into each of both
approaches, has recently shown that by using ER-PCA, the beneficial properties of robust PCA for data containing outliers
carry through to incomplete data (Serneels and Verdonck, 2008).

In what follows, the methodology of ER-PCA will be extended to principal component regression. Again, several robust
estimators can be plugged in, each having different properties. In a simulation study, the properties of the different resulting
ER-PCR methods will be evaluated. In an example, the applicability of the method will be illustrated.

2. The ER-PCR algorithm

As stated in the Introduction, the ER algorithm is a robustification of the EM algorithm, by means of insertion of a robust
plug-in estimator (Little and Smith, 1987; Cheng and Victoria-Feser, 2002). Both the EM and ER algorithms are thus very
similar; the main idea behind them is the following. Each iteration of the EM/ER algorithms consists of two steps: at first,
the missing elements are filled in according to what they are expected to equal, based on the model from the previous
iteration. This is called the Expectation or E-step. Secondly, the model is estimated from the data in which the missing
elements have been filled in. This second step is referred to as the maximisation step or M-step for classical estimators and
as the robust step or R-step for robust estimators. The iterative procedure stops upon convergence on the estimated missing
elements.

For PCR both X and the dependent variables Y, may contain missing elements. PCR fits into the latent variable regression
model (Burnham et al., 1999), i.e.

X =TP"+E @)
Y=TQ"+F

where the rows of E and F are assumed to be random errors. In PCR, the entities T and P are estimated as the score and
loading matrices resulting from PCA, whereas an estimate Q is obtained using multivariate regression. For robust PCR,
analogous robust estimates are found by using robust PCA and robust multivariate regression instead. In practice, not all
possible p; in P are used, but only the first h p; corresponding to an optimum in the bias-variance trade-off. The matrices
which only contain the first h scores, loadings, etc., will notationally be distinguished from their complete counterparts by
the use of an index h.

The optimal number of components is often selected as that h for which the Root Mean Squared Error (RMSE) or its
cross-validated (RMSECV) version is minimal. A robust version of this measure, denoted R-RMSE, is proposed by Hubert
and Verboven (2003). Furthermore Engelen and Hubert (2005) also proposed a robust value for the cross-validated version
(R-RMSECV) and introduced the robust component selection (RCS) by combining the R-RMSE and R-RMSECV.If there is no
prior information about the optimal number of components, we suggest to use all variables to fill in the data and apply the
robust criteria to this complete data set in order to select the optimal complexity h.

Notably, estimators for the latent variables regression model (2) also yield an estimate for the vector of regression
coefficients of the linear model

Y =%, + X8 +R. (3)
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