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a b s t r a c t

Calibration on control totals is commonly used for survey weighting. It is usually assumed
that these totals are values known without sampling errors. However, they can be
estimated from other sources. A variance estimator that takes into account the randomness
of control totals is derived. Several situations such as calibration on external sources and
calibration with sampling on two occasions are investigated. Themethodology proposed is
general and can be implemented in various situations when control totals are estimated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Beyond reducing the variance and improving the statistical qualities of estimators, weighting (or calibration) on control
totals is widely used in practice for its highly desirable feature of producing estimates that are consistent with external
sources. However, these control totals can themselves be estimated quantities. For example, the Canadian Labour Force
Survey uses a form of calibration whereby some of the control totals are estimates of quantities obtained on the previous
wave or occasion of the Canadian Labour Force Survey. Similarly, control totals in business surveys may be obtained for
partially reported values in a register. In the Canadian system, some business surveys are calibrated on Gross Business
Income, which is often present in Statistics Canada’s Business Register, but otherwise estimated.
The estimation of control totals can be ignored at the variance estimation stage by assuming that their impact on the

variance of a characteristic of interest is likely to be small. However, this impact might not be negligible. In this paper, we
derive a variance estimator that takes the estimation of control totals into account.
In Section 2, we consider the widely used regression estimator which is an estimator calibrated on a (fixed) control total

known without error. For simplicity, we assume that we have one control total. In Section 9, the method in this paper is
generalised to the case of more than one control total. In Section 3, we introduce the extended regression estimator which
is a regression estimator with an estimated control total. In Section 4, we propose an estimator for the variance of the
extended regression estimator. In Section 5, we show how this estimator can be used when the control total is estimated
from an independent source. In Section 6, we show how the extended regression estimator can be used for sampling on
two occasions. In Section 7, we show how to estimate the variance when the control total is estimated from an earlier wave
of a repeated survey. In Section 8, we define the composite estimator which is a particular case of the extended regression
estimator, andwe showhow to estimate its variance. Sen (1973) proposed an approximation of the variance of the composite
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estimator. However, this estimator is not designed to handle unequal probability sampling. The proposed method is more
general, as it can be used with unequal probability sampling designs. We also propose an adjustment to take into account
the imputation component of the composite estimator. Finally, in Section 9, we support our result with a simulation study
based upon two waves (April and May 2003) of the Canadian Labour Force Survey.

2. The customary regression estimator

In this section, we introduce some notation used in this paper. We also define the customary regression estimator and
the usual estimator for its variance.
Consider a finite population denoted byU = {1, . . . , i, . . . ,N}whereN is the number of units in the population. Suppose

we wish to estimate the population total Y =
∑
i∈U yi, where yi is the value of a variable of interest y, for a unit labelled i.

A sample s is a sub-set of n distinct units from U . We assume the sample is selected according to a probability sampling
design p(s). For simplicity, we assume complete response. A design unbiased estimator of Y is given by the π-estimator
(Narain, 1951; Horvitz and Thompson, 1952),

Ŷ =
∑
i∈s

diyi, (1)

where di = 1/πi with πi denoting the first-order inclusion probability of unit i.
Consider the regression estimator (Cassel et al., 1976, 1977) which is a particular form of the calibration estimator (Huang

and Fuller, 1978; Deville and Särndal, 1992). The regression estimator (e.g. Särndal et al. (1992, page 225)) is defined by

Ŷg = Ŷ +
J∑
j=1

(Xj − X̂j)B̂j,

with B̂1, . . . , B̂2 are the components of the J vector

B̂ = (B̂1, . . . , B̂J)τ =

(∑
j∈s

djxjxτj

)−1∑
k∈s

dkxkyk, (2)

where xi = (xij, . . . , xiJ)τ is column vector of auxiliary variables, xτi denotes the transpose of xi, Xj =
∑
i∈U xij and

X̂j =
∑
i∈s dixij.

For simplicity, we consider that themodel thatmotivates the regression estimator has one quantitative auxiliary variable
x and an intercept; that is, xi = (1, xi)τ where xi denotes the values of the auxiliary variable for a unit labelled i. This implies
(Särndal et al., 1992, page 229)

Ŷg = Ỹ + (X − X̃)β̂, (3)

with X =
∑
i∈U xi, Ỹ = (N/N̂)Ŷ , X̃ = (N/N̂)

∑
i∈s dixi, N̂ =

∑
i∈s di and

β̂ =

∑
i∈s
di(yi − Ŷ/N)(xi − X̂/N)∑
j∈s
dj(xj − X̂/N)2

.

Linearization can be used to derive an estimator for the variance of the regression estimator. This estimator for the variance
is given by (Särndal et al., 1992, page 237)

V̂ (Ŷg) =
∑
i∈s

∑
j∈s

^
∆ij diêi djêj, (4)

where êi = yi− Ŷ/N− β̂(xi− X̂/N) and
^
∆ij = (πij−πiπj)π

−1
ij , with πij denoting the joint inclusion probability of units i and

j. An alternative estimator of the variance uses the regression weights instead of the sampling weights di. This alternative
estimator can also be used instead of (4).
Huang and Fuller (1978) introduced a more elaborate version of (3) (see also Deville and Särndal (1992)) often called

calibrated estimator. For simplicity, we consider the simplified version (3) which is asymptotically equivalent to the
calibration estimator, as far as the variance is concerned (Deville and Särndal, 1992).

3. The extended regression estimator

In this section, we define the extended regression estimator (Rancourt, 2001). It is often assumed that the control total X
is known. However, in practice X might be unknown and estimated from other sources. Let X̂0 be an estimator of X based on
another sample s0. The estimator X̂0 can be either a π-estimator or a regression estimator. For simplicity, we assume that
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