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a b s t r a c t

The Clayton models, also called gamma frailty models, have been widely used for multi-
variate survival analysis. These models typically appear in either conditional or marginal
formulations where covariates are incorporated through regression models. The two for-
mulations provide us the flexibility to delineate various types of dependence of survival
times on covariates, along with the availability of directly applying the likelihood method
for inferences if the baseline hazard functions are parametrically or weakly parametrically
specified. There are, however, fundamental issues pertaining to thesemodels. It is not clear
how the covariate effects in the two formulations are related to each other. What is the im-
pact if misusing the conditional formulation when the true form should be marginal, or
vice versa? These problems are investigated, and the relationship of the covariate coeffi-
cients between conditional and marginal regression models is established. Furthermore,
empirical studies are carried out to assess how censoring proportionmay affect estimation
of covariate coefficients. A real example from the Busselton Health Study is analyzed for
illustration.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate survival data arise commonly in biomedical research, clinical trials and epidemiological studies. Different
from univariate survival analysis, multivariate survival analysis typically deals with various association structures among
survival times within same subjects or clusters. A common strategy is to use latent variables to delineate association
among multivariate survival times. Conditional on the latent variables, or called frailties, the survival times are assumed
independent. These models are flexible and effective in characterizing different types of association structures among
multivariate survival times. For instance, Hougaard (1986) investigates a class of frailty models by assuming different
distributions for the frailty. Recently, frailty models are extended to incorporate settings such as transformation models
(Zeng et al., 2009) and additive hazards models (Martinussen et al., 2011).

Among various frailty models, one of the most popularly used frailty models is the gamma frailty model, or the so-called
Clayton model, for which the frailty assumes a gamma distribution (Clayton, 1978; Oakes, 1982, 1986, 1989; Hougaard,
2000). To be specific, let (T1, . . . , Tm) be multivariate survival times, and α be a latent variable (or frailty) that features
dependence among the Tj, j = 1, . . . ,m. That is, conditional on α, the survival times (T1, . . . , Tm) are assumed independent.
Often the frailty α is assumed to follow a gamma distribution, α ∼ Gamma(φ, φ), with mean 1 and variance φ−1 without
loss of generality (Lawless, 2003).

Given a frailty α, let the conditional survivor function Sj(tj|α) for Tj be written as
Sj(tj|α) = P(Tj > tj|α) = exp{−α · Λ∗

j (tj)},
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where Λ∗

j (tj) is referred to as a conditional basic cumulative hazard function. The joint survivor function for the Clayton
model is then derived as

S(t1, . . . , tm) = Pr(T1 > t1, . . . , Tm > tm)

=


∞

0
{S1(t1|α) · · · Sm(tm|α)}dG(α; φ)

=


1 +

1
φ


Λ∗

1(t1) + · · · + Λ∗

m(tm)
−φ

, (1)

where G(α; φ) represents the cumulative distribution function of the gamma distribution for α.
Note that the marginal survivor function for Tj can be obtained by Sj(tj) =


∞

0 Sj(tj|α)dG(α; φ), yielding

Sj(tj) =


1 +

1
φ

Λ∗

j (tj)
−φ

, j = 1, . . . ,m. (2)

We can then alternatively write the Clayton model as, using the marginal survivor functions

S(t1, . . . , tm) = {S1(t1)
−

1
φ + · · · + Sm(tm)

−
1
φ − (m − 1)}−φ . (3)

Model (1) gives us a conditional representation of the joint survivor function through Λ∗

j (tj) while model (3) provides a
marginal expression of the joint survivor function via Sj(tj). Althoughmodels (1) and (3) involve the dependence parameter
φ differently, they both offer us a way to delineate the dependence of survival times on covariates. Let Xj be the covariates
associated with survival times Tj, j = 1, . . . ,m. We now employ regression models to feature Λ∗

j (tj) or Sj(tj) in order to
spell out covariate effects on survival processes. In particular, we consider multiplicative regression models

Λ∗

j (tj|Xj) = Λ∗

0j(tj) exp(X
′

j β
∗), (4)

or

Λj(tj|Xj) = Λ0j(tj) exp(X ′

j β), (5)

where Λ∗

0j(tj) is the basic baseline cumulative hazard function, Λ0j(tj) is the marginal baseline cumulative hazard function
with Sj(tj|Xj) = exp{−Λj(tj|Xj)}, and β∗ and β are the respective regression parameters.

Conditional representation (1) with (4) and marginal expression (3) with (5) enable us to conveniently modulate the
dependence ofmultivariate survival times on relevant covariates. Based on thesemodel formulations, inference on covariate
coefficients becomes straightforward as one can directly invoke the maximum likelihood method when the cumulative
hazard functions Λ∗

0j or Λ0j are modeled. Due to this reason, the Clayton models with formulations (1) or (3) have been
commonly used in practice to analyze multivariate survival data (e.g, Clayton and Cuzick, 1985).

A couple of important issues pertaining to the Clayton models, however, remain unclear. For instance, which
representation is preferred, conditional form (1) or marginal form (3)? If (1) with (4) is the correct model, but wemisspecify
our working model as (3) with (5), or vice versa, what would be the impact? How different are the covariate coefficients β∗

and β in terms of their interpretation? Furthermore, how would the association strength and censoring of survival times
affect the estimation of covariate effects? In this paper we address these concerns and provide useful insights into the two
formulations (1) and (3) for the Claytonmodels. For ease of exposition, we focus discussion on the bivariate Claytonmodels.
The results can be extended to the general multivariate Clayton models in a straightforward manner.

The remainder of the manuscript is organized as follows. In Section 2, we derive the relationship between the marginal
and conditional covariate coefficients for the bivariate Clayton models. In Section 3, we discuss the likelihood method that
facilitates the effects of association strength and censoring on estimation of covariate coefficients. In Section 4, we report
simulation studies and analysis results for data from the Busselton Health Study. Concluding remarks are included in the
last section.

2. Clayton models and covariate coefficients

2.1. Clayton models

For bivariate survival times T1 and T2, both conditional model (1) and marginal model (3) can be employed to formulate
the joint survivor function S(t1, t2). The covariates X1 and X2 can be incorporated in S(t1, t2) through conditional regression
model (4) and marginal regression model (5). Although both (4) and (5) feature covariate effects on survival times, their
interpretation is quite different. The covariate coefficients β∗ in conditional model (4) emphasize the effects of covariates
on individuals, while the β in marginal model (5) give the average covariate effects at the population level.

Employing the conditional proportional hazards (PH) specification (4) to (1) gives a bivariate survivor function:

Sc(t1, t2|X) =


1 +

1
φ

Λ∗

01(t1) exp(X
′

1β
∗

1 ) +
1
φ

Λ∗

02(t2) exp(X
′

2β
∗

2 )
−φ

, (6)
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