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a b s t r a c t

We develop a Bayesian dynamic model for modeling and forecasting multivariate time se-
ries relaxing the assumption of normality for the initial distribution of the state space pa-
rameter, and replacing it by amore flexible class of distributions, whichwe call Generalized
Skew-Normal (GSN) Distributions. We develop a version of the classic Kalman filter, again
obtaining GSN predictive and filtering distributions. As we are supposing the random fluc-
tuations covariances to be unknown, a Gibbs-type sampler algorithm is developed in order
to perform Bayesian inference. We work with two simulation experiments with scenar-
ios close to real problems in order to show the efficacy of our proposed model. Finally, we
apply our technique to a real data set.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The normal dynamic linear model

ADynamic Linear Model (hereafter DLM) is a particular case of the State Space Model. As a general rule, we can say that, for
each t = 1, . . . , n, in a state spacemodelwe have observations of an r-dimensional time series {Yt}, which is a function of an
unobservable p-dimensional random variable θt (called The State of Nature at Time t) and of a measurement error νt . At the
same time, θt follows an evolution process that depends on θt−1 and a random fluctuationwt or, in more formal notation,

Yt = ft(θt , νt), θt = gt(θt−1,wt), t = 1, 2, . . . , n, (1)
where {ft} and {gt} are convenient sequences of functions.

There are a variety of phenomena that can be described according to this structure. Thismodel is very general and encom-
passes several well-knownmodels available in the literature of time series, like ARMAmodels. Formore details about theory
and applications in several areas, see the highly recommended texts of West and Harrison (1997) and Petris et al. (2009).

We are interested specifically in the particular class of Dynamic Linear Models. In this class, for each t ∈ {1, 2, . . . , n}, we
observe an r-dimensional random vector Yt , such that

Yt = F′

tθt + νt , with νt ∼ Nr(0,V); (2)

θt = Gtθt−1 + wt , withwt ∼ Np(0,W); (3)

θ0 ∼ Np(m0, C0), (4)
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where Yt and θt are as before, Ft : p × r is a known matrix, Gt : p × p is also a known matrix, called Evolution Matrix,
V : r × r and W : p × p are (possibly) unknown error covariance matrices, m0 : p × 1 and C0 : p × p are, respectively, the
mean vector and the (positive definite) covariance matrix of the Initial Distribution of θ0. We call this model the Normal (or
Gaussian) DLM.

We need some additional assumptions, listed below:
(i) wt and θt−1 are uncorrelated for all t;
(ii) νt and νs are uncorrelated for all t ≠ s;
(iii) wt andws are uncorrelated for all t ≠ s;
(iv) νt and ws are uncorrelated for all t and for all s;
(v) θ0 and νt are uncorrelated for all t;
(vi) θ0 andwt are uncorrelated for all t .

As observed by Naveau et al. (2005), the assumption of normality can be questionable for a large number of applications
see, for example, Grabek et al. (2011) and Higgs (2011). In this work, we discuss the case when the initial distribution of the
state space parameter (that is, the distribution of θ0) is possibly skewed. Our purpose is to replace the normal distribution
in (4) by a more flexible one, which is an element of a huge family of distributions that also contains the normal one. Using
this simple method, we obtain natural extensions of the classic Kalman filter and of the Gibbs sample procedure used for
inferences of some unknown quantities in the normal case. With the help of simulated and real data we show that our
method has clear advantage over the normal DLM when dealing with data with possibly skewed nature.

Naveau et al. (2005) obtained a Kalman filter that accommodates skew-normal observational errors in DLMs, but unlike
their work we explore the inferential aspects of the problem more deeply. We provide not only the filtered estimates of
the states θt , as is the case in Naveau et al. (2005), but also expressions for the one-step-ahead predictive distribution of
Yt and a simple Gibbs sampler scheme to generate draws from the posterior distribution of the proposed model that allow
us to estimate some unknown quantities like the observation and evolution covariance matrices. Additionally we develop a
method to obtain smoothed estimates of the state vector.

The paper is organized as follows. In Section 2 we present the family of fundamental skew-normal distributions, which
is the most important concept to us, because all the predictive and filtering distributions belong to this class. In Section 3
we present our extension of the normal DLM by introducing a skewed prior for the state parameter. In Section 4 we present
a Gibbs-type algorithm to perform Bayesian inference. In Section 5 we show the efficiency of our method by analyzing two
artificial and one real data set. Finally, in Section 7, we present some discussions and conclusions.

2. Fundamental skew-normal distributions

2.1. Basic concepts

A skew-normal distribution is a distribution that extends the normal one by the introduction of additional parameters
that regulate skewness. Some versions, extensions and unifications of the skew-normal distribution are carefully surveyed
in works like Azzalini (2005) and Arellano-Valle and Azzalini (2006). In our proposed model, to be presented in the next
sections, we work with a subclass of the family of skew distributions presented in Arellano-Valle and Genton (2005), which
is called the Fundamental Skew-Normal Distribution Family.

In what follows, a vector x is a p×1matrix, x′ is the transpose of x, 0p is the null p×1 vector and Ip is the identity matrix

of order p (sometimes we drop the index p when there is no possibility of confusion). In the following definition, d
= means

‘‘has the same distribution as’’, Np(µ, 6) denotes the p-variate normal distribution (dropping p when p = 1) with mean
vector µ and (always positive definite) covariance matrix 6 and, if we consider the random vector X = (X1, . . . , Xp)

′, we
define the Borel set (X > 0) = (X1 > 0, . . . , Xp > 0).

Definition 1. We say that the random vector Z has a p-variate Fundamental Skew-Normal (FUSN) Distributionwhen Z d
= Y |

(ϕ > 0), where Y ∼ Np(µ, 6) and ϕ is anm-dimensional random vector.

There is no difficulty in showing that if P(ϕ > 0) > 0, then Z has density
g(z) = [P(ϕ > 0)]−1Np(z | µ, 6)P(ϕ > 0 | Y = y), z ∈ Rp,

where Np(· | µ, 6) is the density of the Np(µ, 6) distribution.

2.2. A particular FUSN distribution

In thisworkwe have particular interest in the case ofm = 1 andϕ ∼ N(ξ , η2). Nowwe construct this version of the FUSN
distribution that will be used in our model formulation. Consider, then, the following structure: let Y be a p-dimensional
random vector, µ : p× 1 and 1 : p× 1 vectors of constants, V : p× p a positive definite matrix, ξ ∈ R and η2 > 0 such that

Y | ϕ ∼ Np(µ + 1ϕ,V), ϕ ∼ TN(ξ , η2, (0, ∞)), (5)

with TN(ξ , η2, (a, b)) denoting a truncated normal distribution on (a, b) (which is the distribution of Z | (a < Z < b) when
Z ∼ N(ξ , η2)). Note that either a = −∞ or b = ∞ is allowed.
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