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a b s t r a c t

Environmental (spatial) monitoring of different variables often involves left-censored
observations falling below the minimum detection limit (MDL) of the instruments used
to quantify them. Several methods to predict the variables at new locations given left-
censored observations of a stationary spatial process are compared. The methods use
versions of kriging predictors, being the best linear unbiased predictors minimizing the
mean squared prediction errors. A semi-naive method that determines imputed values
at censored locations in an iterative algorithm together with variogram estimation is
proposed. It is compared with a computationally intensive method relying on Gaussian
assumptions, as well as with two distribution-free methods that impute the MDL or
MDL divided by two at the locations with censored values. Their predictive performance
is compared in a simulation study for both Gaussian and non-Gaussian processes and
discussed in relation to the complexity of the methods from a user’s perspective. The
method relying on Gaussian assumptions performs, as expected, best not only for Gaussian
processes, but also for other processes with symmetric marginal distributions. Some of the
(semi-)naive methods also work well for these cases. For processes with skewed marginal
distributions (semi-)naive methods work better. The main differences in predictive
performance arise for small true values. For large true values no difference between
methods is apparent.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spatial prediction methods generally assume that data are fully observed. However, in environmental monitoring, as
well as in many other disciplines, the collected spatial data set often includes left-censored observations falling below
the minimum detection limit (MDL) of the measuring device. Ways of handling this type of censoring are discussed,
e.g. by Bernhardt et al. (2014) in the context of modeling survival data, when the covariates are left-censored. Some spatial
prediction methods have also been proposed, ranging from rather naive distribution-free approaches to more sophisticated
computer intensive model-based methods. The model-based spatial methods rely on Gaussian assumptions. For data sets
with skewed distributions, which are frequently occurring in environmental sciences, the user has to find an appropriate
Gaussian transformation of the data (if possible) in order to use the model-based methods. Naive methods do not rely on
distributional assumptions and may thus be directly applied to data.

The naive methods are typically based on kriging predictors with plugged-in values at the censored locations. The kriging
predictor is the best linear unbiased predictor, given the observed data, that minimizes the mean squared prediction
error (see, e.g. Cressie, 1993). Values at censored locations are imputed by simple naive methods, e.g. assigning them the
value of the MDL or MDL/2. When the studied variable is known to take values in [l, ∞), where l < MDL, values randomly
(uniformly) selected on the interval [l,MDL) are sometimes used. The naivemethods are easy to understand and implement
and fast to compute, but can have difficulties to predict values below the MDL. Moreover, the spatial autocorrelation
structure inherent in the data is not utilized when determining the imputed values at censored locations.
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We focus onmethods to predict a spatial process at new locations given that we have observed the process at n locations,
and where some of the observations are left-censored. The spatial process is assumed to be stationary. We propose a semi-
naivemethod designed for processes that take values in [l, ∞), where l <MDL is a known finite lower bound, often zero. Our
method is based on the kriging predictor with imputed values at the censored locations. The method avoids distributional
assumptions. The imputed values at censored locations are determined within an iterative algorithm that estimates the
dependence structure (variogram) based on the observed uncensored data together with successively updated imputed
values at the censored locations, using kriging prediction. The algorithm starts by setting all values at censored locations
equal to the lower bound l. Hence, this algorithm enables the imputed values to be below the MDL and takes into account
the spatial autocorrelation structure when determining them.

Model-based methods are feasible if the data satisfies the distributional assumptions and they may be able to provide
predictive distributions including point estimates and their mean squared errors (MSEs) for new locations. Stein (1992)
considered prediction and inference under the assumption that the observed data is a realization from a (transformed)
truncated stationary Gaussian random field. The truncation point here corresponds to the MDL. Importance sampling is
used to estimate predictive conditional distributions for the new locations.Maximum likelihood estimates of the parameters
determining the mean and the covariance function are found through an approximation of the likelihood function. Rathbun
(2006) used themain ideas of Stein (1992) but applied importance sampling both to find themaximum likelihood estimates
and to predict at new locations. Rathbun’s and Stein’s methods are computationally demanding, especially if there aremany
censored values.

Militino and Ugarte (1999) suggested an EM algorithm to estimate the true values of Gaussian spatial processes at
locationswith censored values. A linear transformation, designed from the dependence structure of the process, was applied
to the spatially observeddata yielding a transformeddata setwith approximately independent heteroscedastic errors. An EM
algorithm for independent data was then used to estimate the unknown values at censored locations. These estimates were
imputed at the censored locations and combinedwith the fully observed data to predict at new locations e.g. via kriging. The
method is computationally less demanding than Rathbun’s and Stein’s methods, but requires that the dependence structure
is known. Sedda et al. (2010) suggest an algorithm, relying on spatial simulated annealing to impute values at censored
locations. The estimated values at censored locations are chosen through an iterative procedure with the goal to minimize
errors in variogram and histogram fitting and kriging prediction. The form of the marginal distribution (histogram) and the
functional form of the variogram need be decided in advance as well as tuning parameters.

Two papers within the Bayesian framework are Toscas (2010) and De Oliveira (2005). De Oliveira (2005) performs
inference and prediction for Gaussian random fields, accounting for the different amount of information contained in
exact and censored observations. Data augmentation and Markov chain Monte Carlo algorithms are used in the proposed
approach. This work is slightly modified and evaluated by a simulation study in Toscas (2010).

Here we compare prediction performance of our semi-naivemethodwith two naivemethods (imputation withMDL and
MDL/2).We also comparewith Rathbun’smodel-basedmethod that relies on Gaussian assumptions but does not require the
covariance structure to be known in advance. Comparisons aremade through a simulation study on Gaussian and lognormal
spatial processes aswell as non-Gaussian Laplace fieldswith asymmetricmarginal distributions (Åberg and Podgórski, 2011;
Bolin, 2013). In particularwe studyhow the variousmethods performwith respect to themarginal distribution of the process
(symmetric or skewed) and the size of the true values (below MDL, middle, or large values).

This article is organized as follows. In Section 2, we describe kriging prediction inmore detail, which is the cornerstone in
the spatial predictionmethods discussed. In Section 3 and Appendix, we describe Rathbun’smethod and the naive and semi-
naive methods. These methods are compared through a simulation study in Section 4. A real data example is considered in
Section 5. Finally, in Section 6, concluding remarks are given.

2. Kriging prediction

Let

Z(s) : s ∈ Rd


be a second-order stationary stochastic process with covariance function C(·; θ). Here θ denotes

the parameters of the covariance function. We want to predict the value of the process, Z(sp), at a new location sp, given
the observed values z = (Z(s1), . . . , Z(sn))T at locations s1, . . . , sn. The ordinary kriging predictor, Ẑ(sp, θ) = λ(θ)T z,
is a linear combination of the observed values. Given the dependence structure, the ordinary kriging weights λ(θ) =

(λ1 (θ) , . . . , λn (θ))T are obtained byminimizing themean squared prediction error σ 2 (θ) = E[(Ẑ(sp, θ)−Z(sp))2] subject
to the constraint

n
i=1 λi(θ) = 1. This constraint ensures that the estimator is unbiased. It turns out that the kriging weights

are functions of the dependence structure solely;

λ(θ)T =


c + 1


1 − 1TΣ−1c


1TΣ−11

T

Σ−1,

where 1 = (1, . . . , 1)T ∈ Rn, c = (C(s1 − sp; θ), . . . , C(sn − sp; θ))T and where Σ is the covariance matrix of z, with
element C(si − sj; θ) in position (i, j). With these weights, the ordinary kriging variance becomes

σ 2 (θ) = C(0; θ) − cTΣ−1c +


1 − 1TΣ−1c

2
1TΣ−11

.
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