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a b s t r a c t

The statistical analysis of tree structured data is a new topic in statistics with wide
application areas. Some Principal Component Analysis (PCA) ideas have been previously
developed for binary tree spaces. These ideas are extended to the more general space of
rooted and ordered trees. Concepts such as tree-line and forward principal component tree-
line are redefined for this more general space, and the optimal algorithm that finds them
is generalized.

An analog of the classical dimension reduction technique in PCA for tree spaces is
developed. To do this, backward principal components, the components that carry the least
amount of information on tree data set, are defined. An optimal algorithm to find them
is presented. Furthermore, the relationship of these to the forward principal components
is investigated, and a path-independence property between the forward and backward
techniques is proven.

These methods are applied to a brain artery data set of 98 subjects. Using these tech-
niques, the effects of aging to the brain artery structure ofmales and females is investigated.
A second data set of the organization structure of a large US company is also analyzed and
the structural differences across different types of departments within the company are
explored.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In statistics, data sets that reside in highdimensional spaces are quite common. Awidely used set of techniques to simplify
and analyze such sets is principal component analysis (PCA). It was introduced by Pearson in 1901 and independently by
Hotelling in 1933. A comprehensive introduction can be found in Jolliffe (2002).

The main aim of PCA is to provide a smaller subspace such that the maximum amount of information is retained when
the original data points are projected onto it. This smaller subspace is expressed through components. In many contexts,
one dimensional subspaces are called lines, and we follow this terminology. The line that carries the most variation present
in the data set is called first principal component (PC1). The second principal component (PC2) is the line such that when
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combined with PC1, the most variation that can be retained in a two-dimensional subspace is kept. One may repeat this
procedure to find as many principal components as necessary to properly summarize the data set in a manageable sized
subspace.

Another way to characterize the principal components is to consider the distances of the data points to a given subspace.
The line which minimizes the sum of squared distances of data points onto it can be considered as PC1. Similarly, PC2 is the
line that, when combined with PC1, the sum of squared distances of the data points to this combination is minimized. In
Euclidean space, these two characterizations are equivalent.

An important topic within PCA is called dimension reduction (see Mardia et al., 1973 for dimension reduction and Jolliffe,
2002, p. 144, for backward elimination method). The aim of dimension reduction method is to find the components such
that when they are eliminated, the projection of the data onto the remaining subspace will retain the maximum amount
of variation. Or alternatively, the remaining subspace will have the minimum sum of squared distances to the data points.
These are the components with least influence.

We would like to note that, in the general sense, any PCA method can be regarded as a dimension reduction process.
However, Mardia et al. (1973) reserves the term dimension reduction specifically for this method, which some other
resources also refer as backward elimination, or backward PCA. In this paperwewill followMardia et al. (1973)’s convention,
together with ‘‘backward PCA’’ terminology. The original approach will be called forward PCA.

In Euclidean space, the choice of which technique to use depends on the needs of the end user: If only the few principal
components with most variation in them are needed, then the forward approach is more suitable. If the aim is to eliminate
only the few least useful components, then the backward approach would be the appropriate choice.

The historically most common space used in statistics is the Euclidean space (Rn) and the PCA ideas were first developed
in this context. In Rn, the two definitions of PCs (maximum variation and minimum distance) are equivalent, and the
components are all orthogonal to each other. In Euclidean space, applying forward or backward PCA n times for a data
set in Rn would provide an orthogonal basis for the whole space.

Moreover, in this context, the set of components obtained with the backward approach is the same as the one obtained
by the classical forward approach, only the order of the components is reversed. This is a direct result of orthogonality
properties in Euclidean space. This phenomenon can be referred as path independence and it is very rare in non-Euclidean
spaces. In fact, to the best of the authors’ knowledge, this paper is presenting the first known example of path independence
in non-Euclidean spaces.

With the advancement of technology, more and more data sets that do not fit into the Euclidean framework became
available to researchers. A major source of these is biological sciences; collecting detailed images of their objects of interest
using advanced imaging technologies. The need to statistically analyze such non-traditional data sets gave rise to many
innovations in statistics. The type of non-traditional setting we will be focusing in this paper is sets of trees as data. Such
sets arise inmany contexts, such as blood vessel trees (Aylward and Bullitt, 2002), lung airways trees (Tschirren et al., 2002),
and phylogenetic trees (Billera et al., 2001).

A first starting point in PCA analysis for trees isWang andMarron (2007),who attacked the problemof analyzing the brain
artery structures obtained through a set of Magnetic Resonance Angiography (MRA) images. They modeled the brain artery
system of each subject as a binary tree and developed an analog of the forward PCA in the binary tree space. They provided
appropriate definitions of concepts such as distance, projection and line in binary tree space. They gave formulations of first,
second, etc. principal components for binary tree data sets based on these definitions. This work has been the first study
in adapting classical PCA ideas from Euclidean space to the new binary tree space. Wang and Marron (2007)’s definitions
involve a vector of attributes for each node.

The PCA formulations of Wang and Marron (2007) gave rise to interesting combinatorial optimization problems. Aydın
et al. (2009) provided an algorithm to find the optimal principal components in binary tree space in linear time. This work
however used the simplified versions of Wang and Marron (2007)’s definitions where attributes are not considered. Only
topology information is included in the analysis. This development enabled a numerical analysis on a full-size data set of
brain arteries, revealing a correlation between their structure and age.

In the context of PCA in non-Euclidean spaces, Jung et al. (2010) gave a backward PCA interpretation in image analysis.
They focus on mildly non-Euclidean, or manifold data, and propose the use of Principal Nested Spheres as a backward step-
wise approach.

Marron et al. (2010) provided a concise overview of backward and forward PCA ideas and their applications in various
non-classical contexts. They also mention the possibility of backwards PCA for trees: ‘‘. . . The notion of backwards PCA
can also generate new approaches to tree line PCA. In particular, following the backwards PCA principal in full suggests
first optimizing over a number of lines together, and then iteratively reducing the number of lines’’. This quote essentially
summarizes one of our goals in this paper.

In this work, our first goal is to define and discuss the subject of rooted ordered tree spaces. We will elaborate on
the correspondence concept, which is at the heart of any numerical analysis for ordered tree data. We will also suggest
some indexing methods, and provide the generalized versions of some basic definitions such as distance, projection,
etc.

Secondly, we will extend the definitions and results of Wang and Marron (2007) and Aydın et al. (2009) on forward PCA
from binary tree space to the more general rooted ordered tree space and proceed with providing optimal algorithms for
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