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Abstract

Several strategies for computing the best subset regression models are proposed. Some of the algorithms are modified versions of
existing regression-tree methods, while others are new. The first algorithm selects the best subset models within a given size range.
It uses a reduced search space and is found to outperform computationally the existing branch-and-bound algorithm. The properties
and computational aspects of the proposed algorithm are discussed in detail. The second new algorithm preorders the variables
inside the regression tree. A radius is defined in order to measure the distance of a node from the root of the tree. The algorithm
applies the preordering to all nodes which have a smaller distance than a certain radius that is given a priori. An efficient method
of preordering the variables is employed. The experimental results indicate that the algorithm performs best when preordering
is employed on a radius of between one quarter and one third of the number of variables. The algorithm has been applied with
such a radius to tackle large-scale subset-selection problems that are considered to be computationally infeasible by conventional
exhaustive-selection methods. A class of new heuristic strategies is also proposed. The most important of these is one that assigns
a different tolerance value to each subset model size. This strategy with different kind of tolerances is equivalent to all exhaustive
and heuristic subset-selection strategies. In addition the strategy can be used to investigate submodels having noncontiguous size
ranges. Its implementation provides a flexible tool for tackling large scale models.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of computing the best-subset regression models arises in statistical model selection. Most of the criteria
used to evaluate the subset models rely upon the residual sum of squares (RSS) (Searle, 1971; Sen and Srivastava,
1990). Consider the standard regression model

y = A�+ ε, � ∼ (0, �2Im), (1)

� The R routines can be found at URL: 〈http://iiun.unine.ch/matrix/software〉.
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Table 1
Leaps and BBA: execution times in seconds for data sets of different sizes, without and with variable preordering

# Variables 36 37 38 39 40 41 42 43 44 45 46 47 48

Leaps 8 29 44 30 203 57 108 319 135 316 685 2697 6023
BBA 2 5 12 8 35 14 9 55 27 37 97 380 1722

Leaps-1 3 16 28 9 82 33 22 203 79 86 306 1326 1910
BBA-1 1 4 13 2 20 11 4 47 18 15 51 216 529

where y ∈ Rm, A ∈ Rm×n is the exogenous data matrix of full column rank, � ∈ Rn is the coefficient vector and ε ∈ Rn

is the noise vector. The columns of A correspond to the exogenous variables V = [v1, . . . , vn]. A submodel S of (1)
comprises some of the variables in V. There are 2n − 1 possible subset models, and their computation is only feasible
for small values of n. The dropping column algorithm (DCA) derives all submodels by generating a regression tree
(Clarke, 1981; Gatu and Kontoghiorghes, 2003; Smith and Bremner, 1989). The parallelization of the DCA moderately
improves its practical value (Gatu and Kontoghiorghes, 2003). Various procedures such as the forward, backward and
stepwise selection try to identify a subset by inspecting very few combinations of variables. However, these methods
rarely succeed in finding the best submodel (Hocking, 1976; Seber, 1977). Other approaches for subset-selection include
ridge regression, the nonnegative garrote and the lasso (Breiman, 1995; Fan and Li, 2001; Tibshirani, 1996). Sequential
replacement algorithms are fairly fast and can be used to give some indication of the maximum size of the subsets that
are likely to be of interest (Hastie et al., 2001). The branch-and-bound algorithms for choosing a subset of k features
from a given larger set of size n have also been investigated within the context of feature selection problems (Narendra
and Fukunaga, 1997; Roberts, 1984; Somol et al., 2004). These strategies are used when the size k of the subset to be
selected is known. Thus, they search over n!/(k!(n− k)!) subsets.

A computationally efficient branch-and-bound algorithm (BBA) has been devised (Gatu and Kontoghiorghes, 2006;
Gatu et al., 2007). The BBA avoids the computation of the whole regression tree and it derives the best subset model
for each number of variables. That is, it computes

argmin
S

RSS(S) subject to |S| = k for k = 1, . . . , n. (2)

The BBA was built around the fundamental property

RSS(S1)�RSS(S2) if S1 ⊆ S2, (3)

where S1 and S2 are two variable subsets of V (Gatu and Kontoghiorghes, 2006). The BBA-1, which is an extension of
the BBA, preorders the n variables according to their strength in the root node. The variables i and j are arranged such that
RSS(V−i )�RSS(V−j ) for each i�j , where V−i is the set V from which the ith variable has been deleted. The BBA-1
has been shown to outperform the previously introduced leaps-and-bounds algorithm (Furnival and Wilson, 1974).
Table 1 shows the execution times of the BBA and leaps-and-bounds algorithm for data sets with 36–48 variables.
Note that the BBA outperforms the leaps-and-bounds with preordering in the root node (Leaps-1). A heuristic version
of the BBA (HBBA) that uses a tolerance parameter to relax the BBA pruning test has been discussed. The HBBA
might not provide the optimal solution, but the relative residual error (RRE) of the computed solution is smaller than
the tolerance employed.

Often models within a given size range must be investigated. These models, hereafter called subrange subset models,
do not require the generation of the whole tree. Thus, the adaptation of the BBA for deriving the subrange subset models
is expected to have a lower computational cost, and thus, it can be feasible to tackle larger scale models. The structural
properties of a regression tree strategy which generates the subrange subset models is investigated and its theoretical
complexity derived. A new nontrivial preordering strategy that outperforms the BBA-1 is designed and analyzed. The
new strategy, which can be found to be significantly faster than existing ones, can derive the best subset models from
a larger pool of variables. In addition, some new heuristic strategies based on the HBBA are developed. The tolerance
parameter is either a function of the level in the regression tree, or of the size of the subset model. The novel strategies
decrease execution time while selecting models of similar, or of even better, quality.
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