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Abstract

A novel non-parametric clustering method based on non-parametric local shrinking is proposed. Each data point is transformed
in such a way that it moves a specific distance toward a cluster center. The direction and the associated size of each movement are
determined by the median of its K-nearest neighbors. This process is repeated until a pre-defined convergence criterion is satisfied.
The optimal value of the number of neighbors is determined by optimizing some commonly used index functions that measure the
strengths of clusters generated by the algorithm. The number of clusters and the final partition are determined automatically without
any input parameter except the stopping rule for convergence. Experiments on simulated and real data sets suggest that the proposed
algorithm achieves relatively high accuracies when compared with classical clustering algorithms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering is the process of partitioning a set of objects into subsets based on some measure of similarity
(or dissimilarity) between pairs of objects. Cluster analysis has many applications in data mining where large data
sets, such as marketing data, need to be partitioned into much smaller and homogeneous groups. Cluster analysis is
also widely used to analyze biological data. For example, given a set of gene expression data, a cluster of genes could
suggest either these genes have a similar function in the cell or that they are regulated by the same transcription factor.
For many clustering algorithms, such as K-means (MacQueen, 1967; Hartigan and Wong, 1979) and PAM (Kaufman
and Rousseeuw, 1990), the number of clusters or sub-populations needs to be specified by the user. The determination
of the number of clusters is one of the most difficult problems in cluster analysis.

Most of the methods for estimating the number of clusters or sub-populations can be classified into several categories.
The first category is to select the number of clusters by optimizing a certain measure of strength of the clusters (Tibshirani
et al., 2000).This category embraces various methods of estimating the number of components of mixture of distributions
(Fraley and Raftery, 2002). The second category of methods first partitions the data into many small clusters, and then
merges these small clusters until no clusters can be merged (Frigui and Krishnapuram, 1999). Another strategy is to
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extract one cluster at a time (Zhung et al., 1996). Moreover, mode detection or bump hunting methods (Cheng and
Hall, 1998; Hall and Heckman, 2000) can also be used to determine the number of clusters.

Recently, a new category for estimating the number of clusters has emerged. The main idea is to first iteratively
move data points toward cluster centers and use the number of convergence points as the number of clusters. The key
issue here is how to move data points toward their cluster centers. One approach, gravitational clustering (Wright,
1977; Kundu, 1999; Sato, 2000; Wang and Rau, 2001) can be interpreted from the point of view of field theory in
physics: each data point is considered as a particle of unit mass with zero velocity which is gradually moving toward
the cluster center due to gravitation. Another approach, mean-shift clustering (Fukunaga and Hostetler, 1975; Cheng,
1995; Comaniciu and Meer, 1999, 2000, 2001, 2002) originates from an idea in kernel density estimation: data points
are transformed toward denser regions by using kernel functions.

In this paper, we propose an automatic clustering algorithm that determines the number of clusters and the partition
without any input parameter except a convergence criterion. Our algorithm also shrinks data points towards cluster
centers as in the mean-shift algorithm. This process is repeated until a specified criterion is satisfied. The final partition
can then be obtained as if all the data points had converged to the cluster centers. In our algorithm, however, the
shrinking process is determined by the K-nearest neighbor approach (Mack and Rosenblatt, 1979) instead of kernel
functions. Since our method is based on the K-nearest neighbor approach, it is very adaptive to the local geometrical
structure of the sample space and well suited for dealing with high-dimensional sparse samples. This property leads to
better clustering especially when the clusters are of irregular shapes.

Since the shrinking in our algorithm is dictated by the K-nearest neighbor approach and the final partition is a function
of K, one would question how this value should be determined. To resolve this critical issue of choosing the value for
K, our algorithm searches for the value of K that maximizes an index function such as the CH index (Calinski and
Harabasz, 1974) or the Silhouette index (Kaufman and Rousseeuw, 1990). To be more specific, our algorithm starts
from a small K and gradually increases the size of K until a measure of the strength of clusters, such as the CH index or
the Silhouette index, is optimized. The estimation of the number of clusters and the ultimate partition are then obtained
simultaneously based on the value of the optimal K. Our algorithm bears similarities to the second class of methods to
determine the number of clusters as it starts from many small clusters first and then merge them together. However, the
number of clusters is not determined by the user. Instead, it is obtained automatically through optimizing a measure of
strength of clusters.

The rest of the paper is organized as follows. In Section 2, we present our clustering algorithm, CLUES. In Section 3,
we describe the data sets used to study the performance of our method and discuss the results. In Section 4, we provide
the conclusion and briefly discuss some future works.

2. The algorithm

CLUES (CLUstEring based on local Shrinking) algorithm consists of three major elements:

(1) shrinking procedure;
(2) partition procedure;
(3) determination of the optimal K.

We will describe the shrinking procedure in the next subsection. We will then discuss the partition procedure in the
following subsection. The measure of strength of clusters such as the CH index and Silhouette index are discussed in
Section 2.3. The determination of K is discussed in Section 2.4.

2.1. Shrinking procedure

The key idea of shrinking procedure resembles the gravitational clustering and the data sharpening procedure. As
in the gravitational clustering, each data point can be viewed as a particle in a gravitational field with unit mass and
zero velocity at the beginning. The local gravitational field would pull each data point into a denser region according
to some gravitational laws. This can also be called sharpening effect as the boundary of each cluster should be clearer
after this step. Therefore, the minimum distance among clusters will increase as the procedure goes on. In the sparse
section of the sample space, the magnitude of the movement can be relatively large. In the dense region, however,
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