
Computational Statistics and Data Analysis 73 (2014) 27–39

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

A non-parametric method to estimate the number of clusters
André Fujita a,∗, Daniel Y. Takahashi b, Alexandre G. Patriota c

a Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Brazil
b Department of Psychology and Neuroscience Institute, Green Hall, Princeton University, USA
c Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 6 February 2013
Received in revised form 19 November
2013
Accepted 20 November 2013
Available online 4 December 2013

Keywords:
Clustering
Silhouette method
k-means
Spectral clustering

a b s t r a c t

An important and yet unsolved problem in unsupervised data clustering is how to deter-
mine the number of clusters. The proposed slope statistic is a non-parametric and data
driven approach for estimating the number of clusters in a dataset. This technique uses
the output of any clustering algorithm and identifies the maximum number of groups that
breaks down the structure of the dataset. Intensive Monte Carlo simulation studies show
that the slope statistic outperforms (for the considered examples) some popular methods
that have been proposed in the literature. Applications in graph clustering, in iris and breast
cancer datasets are shown.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cluster analyses are methods of classifying ‘‘similar’’ elements into clusters or groups. They are applied in a wide range
of areas such as machine learning, pattern recognition, image analysis and bioinformatics. Several clustering methods have
been proposed, namely, k-means, hierarchical clustering, expectation–maximization clustering, spectral clustering, and
many others. By using clustering techniques, one important task is to estimate the proper number of clusters in actual
datasets. For example, in cancer data analysis, the grade of tumorigenesis is determined by geometrical parameters such as
the cell’s shape, density, etc., and the estimation of the number of clusters using these characteristics is important to correctly
classify the patients that will receive different treatments depending on the grade of the tumor. In neuroscience, functional
magnetic resonance imaging (fMRI) data is clustered and the number of clusters is estimated in order to identify the cortical
areas that are activated in a determined cognitive task (Sato et al., 2007). In machine learning and pattern recognition, the
estimation of the number of clusters is important in image segmentation in order to identify different objects (Xiang and
Gong, 2008), in real-time monitoring network to recognize emerging behavior of a physical system (Zang and Chen, 2010)
and in the detection of the number of distinct facial poses under varying illuminations (He et al., 2010).

Although there are several proposals to determine the number of clusters, it is yet an unsolved and difficult problem
due to the absence of a clear definition of cluster and especially because it is dependent on both the adopted clustering
method and the characteristics of the data distribution (shape and scale, for instance). One difficulty for the majority of
the methods is to correctly classify the dataset when the data points inside the same cluster are correlated or are not
Gaussian, in high dimensional situations or when there is a dominant cluster (Sugar and James, 2003; Yin et al., 2008).
In this paper we propose the slope statistic, a non-parametric and data-driven method for determining the number of
clusters in a dataset. The slope statistic is free of reference distributions, has an intuitive interpretation and does not require
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intensive computations. Furthermore, it can handle situations when the dataset is not a mixture of Gaussian distributions,
when there exists a dominant cluster and correlation in the dataset, and when the number of parameters is large. Our
proposal is an extension of the silhouette method introduced by Rousseeuw (1987).

In intensive Monte Carlo simulations for determining the number of clusters on artificial datasets, we compare the
proposed slope statistic to other seven methods: (a) Bayesian Information Criterion (BIC) (Celeux and Govaert, 1992) for a
mixture of Gaussian distributions, (b) the Calinski andHarabasz (CH) index Calinski andHarabasz (1974), (c) the Krzanowski
and Lai (KL) index Krzanowski and Lai (1985), (d) the silhouette method (Rousseeuw, 1987), (e) the gap statistic (Tibshirani
et al., 2001), (f) the prediction strength (Tibshirani andWalther, 2005), and (g) the jumpmethod (Sugar and James, 2003). In
this article, we show that the slope heuristic performs significantly better than these seven methods when the data points
inside the same cluster are correlated, non-Gaussian, in high dimensional situations, or when there is a dominant cluster.
We also apply the slope statistic in graph clustering and actual biological datasets. We obtain results consistent with prior
knowledge of the empirical datasets.

The paper unfolds as follows. Section 2presents basic notations. Section 3 introduces the slope statistic. Section 4provides
a brief review of other common methods. Some simulations in items generated by different probability distributions and
graph clustering are provided in Section 5 and finally, applications in actual datasets in Section 6.

2. Basic notation

Let X = {x1, . . . , xn} be the data with n elements and let d(xi, xj) denote the distance between xi and xj. The Euclidean
distance is the most common choice but other metrics can also be considered. Suppose that we must classify each element
of the data X in one of the following k clusters C1, C2, . . . , Ck. The first difficulty is that the number of clusters k is usually
unknown a priori, thus we have to estimate this value. Furthermore, we note that the definition of a cluster depends on the
application and it is not always clear what should be the optimal number of clusters for a given problem even in theoretical
grounds. The usual approach to solve this problem is to define a parametric model for the shape of clusters or to use a two-
step procedure where a clustering algorithm is applied and then goodness of the classification determines the number of
clusters. We follow the latter approach and use the silhouette statistic proposed by Rousseeuw (1987) as the goodness of
classification measure. For the sake of completeness, we present a brief review of this measure in what follows.

Define

d(xi, B) =
1
#B


x∈B

d(xi, x), (1)

as the average dissimilarity of xi to all elements of cluster B, where #B is the number of elements of B. Denote by A the cluster
to which xi has been assigned by the clustering algorithm and by C any other cluster different of A. Define

ai = d(xi, A) and bi = min
C≠A

d(xi, C).

The quantities ai and bi are the ‘‘within’’ dissimilarity and the smallest ‘‘between’’ dissimilarity, respectively. Then a
proposal to measure how well object xi has been clustered is given by Rousseeuw (1987)

si =


bi − ai

max{bi, ai}
, if #A > 1,

0, if #A = 1.
(2)

Now, for each number of clusters k = 2, 3, . . . , n compute the silhouette statistic as

s(k) =
1
n

n
i=1

si.

The choice of the silhouette statistic (s(k)) is interesting due to its interpretations. Notice that −1 ≤ si ≤ 1, therefore,
there are three possible situations that must be analyzed. The first one is when si ≈ 1. This implies that the ‘‘within’’
dissimilarity is much smaller than the smallest ‘‘between’’ dissimilarity (ai ≪ bi). In other words, the object xi has been
assigned to an appropriate cluster since the second-best choice cluster is not nearly as close as the cluster the object is
assigned. The second situation occurswhen si ≈ 0. Then ai ≈ bi, andhence it is not clearwhether i should have been assigned
to the cluster the object is assigned or to the second-best choice cluster because object xi lies equally far away from both.
The third situation takes place when si ≈ −1. Then ai ≫ bi, so object xi lies much closer to the second-best choice cluster
than to the cluster the object is assigned. Therefore it is more natural to assign object xi to the second-best choice cluster
instead of the cluster the object is assigned because this object xi has been ‘‘misclassified’’. Usually, the clustering algorithms
(the k-means algorithm, for instance) find at least a local optimum solution, therefore this case where si ≈ −1 rarely occurs.
To conclude, si measures how well object xi has been classified. Consequently, the silhouette statistic s(k) (−1 ≤ s(k) ≤ 1)
measures how well all the objects xi for i = 1, . . . , n have been classified on average (Rousseeuw, 1987).

In Rousseeuw’s original proposal, it is suggested to select the k such that s(k) is maximum (k̂ = argmaxk∈{2,...,n} s(k)).
This procedure proceeds well if all clusters are homogeneous, i.e., they have approximately the same inner variability.
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