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a b s t r a c t

Gaussian Process (GP) models are popular statistical surrogates used for emulating
computationally expensive computer simulators. The quality of a GP model fit can be
assessed by a goodness of fit measure based on optimized likelihood. Finding the global
maximum of the likelihood function for a GP model is typically challenging, as the
likelihood surface often has multiple local optima, and an explicit expression for the
gradient of the likelihood function may not be available. Previous methods for optimizing
the likelihood function have proven to be robust and accurate, though relatively inefficient.
Several likelihood optimization techniques are proposed, including two modified multi-
start local search techniques, that are equally as reliable, and significantly more efficient
than existing methods. A hybridization of the global search algorithm Dividing Rectangles
(DIRECT) with the local optimization algorithm BFGS provides a comparable GP model
quality for a fraction of the computational cost, and is the preferred optimization technique
when computational resources are limited. Several test functions and an application
motivated by oil reservoir development are used to test and compare the performance
of the proposed methods with the implementation provided in the R library GPfit. The
proposed method is implemented in a Matlab package, GPMfit.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Computer simulators are useful tools for modelling complex real world systems that are either impractical, expensive,
or time consuming to physically observe. For example, the energy generated by the tides of large ocean basins (Greenberg,
1979), the estimation of the magnetic field generated near the Milky Way (Short et al., 2007), and the analysis of the flow
of oil in a reservoir (Aziz and Settari, 1979) — the latter of which motivated this research — can be achieved through the use
of computer simulators. That being said, realistic computer simulators can be computationally expensive to run, and as a
result are often emulated using statistical models, such as Gaussian Process (GP) models (Sacks et al., 1989).

The maximum likelihood approach for fitting a GP model to deterministic simulator output requires minimizing the
negative log-likelihood, or deviance. Rasmussen and Williams (2006) proposed the use of either a randomized multi-start
conjugate gradientmethod or Newton’smethod for this problem. Explicit information about the gradient of deviance cannot
be easily obtained, however, and the deviance function surface often has many local optima, making the optimization

✩ Supplementary Material: The open source Matlab package GPMfit is available for download on SourceForge.net. See Readme.txt for detailed
instruction. The main functions are model_fit.m and predictor_iterative.m.
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problem challenging (MacDonald et al., 2013). Derivative-free optimization techniques, such as the genetic algorithm
used by Ranjan et al. (2011), or the differential evolution algorithm used by Petelin et al. (2011), are robust, but can be
computationally inefficient. Gradient approximation methods, such as the Broyden–Fletcher–Goldfarb–Shanno method
(BFGS) (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), are generally faster, but have the potential to
converge only locally if poorly initialized. MacDonald et al. (2013) proposed a clustering-based multi-start BFGS algorithm,
which allows for a more global search to be performed. Nonetheless, this method requires multiple executions of BFGS,
which is also computationally expensive.

In this paper we investigate several optimization techniques in order to improve the efficiency of the likelihood
optimization process. Each technique is a combination of global and local search strategies. At the global level, we propose
using the Dividing Rectangles algorithm (DIRECT) (Finkel, 2003) as an alternative to the clustering-based approach for
choosing the starting point(s) of the local search. In terms of the local search, we compare the performance of BFGS with
that of Implicit Filtering (IF), a sophisticated pattern search algorithm developed by Kelley (2011) for multimodal noisy
functions. We use several test functions and an application motivated by real-world oil reservoir development to compare
the performance of different optimization techniques, asmeasured by the prediction accuracy (optimized deviance and root
mean squared prediction error) and number of deviance function evaluations (FEs) required to optimize the deviance. After
an extensive case study we find that a hybrid approach of DIRECT and BFGS is the most efficient optimization technique for
fitting such GP models.

The remainder of the paper is outlined as follows. Section 2 describes the GP model and the main components of the
newly developed Matlab package GPMfit. In Section 3 we briefly outline the optimization techniques used for minimizing
the deviance. Section 4 provides the results and analysis for several test functions, followed by an example in Section 5
where the GP model is fit to an oil reservoir simulator using our proposed method. Concluding remarks are provided in
Section 6.

2. The Gaussian process model

The GP model requires as input a set of design points, xi = (xi1, . . . , xid)′, and the corresponding simulator outputs,
yi = y(xi), where i = 1, . . . , n, and n is the number of user supplied design points. Here, the prime symbol, ′, denotes the
transpose of vectors or matrices. We assume that the simulator provides a scalar valued output, yi, for each d-dimensional
design point xi, and we use Y = (y1, . . . , yn)′ to denote the n × 1 vector of simulator outputs. The simulator output is
modelled as

yi = µ + z(xi),

where µ is the overall mean, and z(xi) is a GP with E[z(xi)] = 0,Var[z(xi)] = σ 2, and Cov[(z(xi), z(xj))] = σ 2Rij.
The n× n spatial correlation matrix R defines the degree of dependency between design points, based on their observed

simulator value. Following MacDonald et al. (2013), we use the Gaussian correlation matrix, R; a special case of the power
exponential correlation family defined as

Rij =

d
k=1

exp{−10βk |xik − xjk|pk} for all i, j. (1)

Here pk = 2 is the smoothness parameter, and β = (β1, . . . , βd) is a 1 × d vector of correlation hyper-parameters which
measures the sensitivity of the response to the spatial distribution of |xik − xjk|2 for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . , d}
(Loeppky et al., 2009).

The formulation of the correlation function in Eq. (1) is slightly different than the popular form of Gaussian correlation,
which replaces 10βk with θk (e.g., in Ranjan et al., 2011). MacDonald et al. (2013) demonstrate that the deviance surface with
β-parametrization shown in Eq. (1) is much easier to optimize as compared to the commonly used θ-parametrization.

Sacks et al. (1989) show that the best linear unbiased predictor (BLUP) at a given point x∗ in the input space (typically
normalized to [0, 1]d) is

ŷ(x∗) = µ̂ + r ′R−1(Y − 1nµ̂)

=


(1 − r ′R−11n)

1n
′R−11n

1′

n + r ′


R−1Y

≡ C ′Y ,

where r = [r1(x∗), . . . , rn(x∗)]′, and ri(x∗) = corr[z(x∗), z(xi)] is the correlation between z(x∗) and z(xi). The GPmodel also
returns the associated uncertainty estimate, s2(x∗), as measured by the mean squared error (MSE),

s2(x∗) = E

(ŷ(x∗) − y(x∗))2


= σ̂ 2(1 − 2C ′r + C ′RC). (2)

The model fitting process requires the estimation of µ, σ 2 and β . The closed form estimators of the mean and variance
are given by

µ̂(β) = (1′

nR
−11n)

−1(1′

nR
−1Y )
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