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a b s t r a c t

Amean field variational Bayes approach to support vectormachines (SVMs) using the latent
variable representation on Polson and Scott (2012) is presented. This representation allows
circumvention of many of the shortcomings associated with classical SVMs including
automatic penalty parameter selection, the ability to handle dependent samples, missing
data and variable selection. We demonstrate on simulated and real datasets that our
approach is easily extendable to non-standard situations and outperforms the classical
SVM approach whilst remaining computationally efficient.
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1. Introduction

Support vector machines (SVMs) and its variants remain one of the most popular classification methods in machine
learning and have been successfully utilized in many applications. Such applications include image classification, speech
recognition, cancer diagnosis, natural language processing, forecasting, bio-informatics and as such these methods are
likely to remain popular for many years to come. The strengths of SVMs derive from its formulation as an elegant convex
optimization problem (involving few tuning parameter) which can be efficiently solved and whose solution only depends
on a subset of the input samples, called support vectors.

Despite such popularity standard SVMs suffer from several shortcomings. Section 10.7 of Hastie et al. (2009) summarizes
these as: (i) natural handling of data ofmixed type, (ii) handling ofmissing values (iii) robustness to outliers in the input space
(iv) insensitive to monotonic transformations of inputs (v) computational scalability to large sample sizes, (vi) inability to
deal with irrelevant inputs and (vii) interpretability. To this list we would add (viii) the inability to deal with the correlation
within samples. In this paper we aim to address (ii), (vi) and (viii).

This paper is not the first to consider these problems. Missingness has been considered by Smola et al. (2005), Pelckmans
et al. (2005) and Nebot-Troyano and Belanche-Muñoz (2010). Dealing with irrelevant inputs via variable/feature selection
in SVMs has been considered by many authors including Weston et al. (2000), Tipping (2001), Guyon et al. (2002), Zhu
et al. (2003), Gold et al. (2005) and Chu et al. (2006). On the other hand, very few papers consider the modification of
SVMs to handle the dependent or non-identically distributed data. Notable exceptions include Dundar et al. (2007), Lu et al.
(2011), Pearce andWand (2009) and Luts et al. (2012). However, these problems are dealt with isolation and using different
approaches, rather than in a unified manner and it is difficult to see how these approaches could be adapted to multiple
complications, e.g., missingness and variable selection.
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In the paperwe follow the earlierwork of Boser et al. (1992), Bishop and Tipping (2000), Gao andWong (2005) and Polson
and Scott (2011) who propose various latent variable representations of the SVM loss function and reformulate the problem
in a (pseudo-) Bayesian framework. This provides a unified approachwhich releases SVMs frommany of the above problems
including allowing efficient penalty parameter selection, correlation within samples, variable selection and missing data
via well developed Bayesian methodology. Typically such Bayesian models are fit via Markov chain Monte Carlo (MCMC)
methods. Unfortunately, MCMC methods can be notoriously slow when applied to large or complex models and can be
rendered unsuitable in applications where speed is essential. These situations are precisely the same situations where SVMs
are typically popular.

Our approach to this problem is to apply the mean field variational Bayes (VB) methods to the models we propose. The
main advantage of this approach is a streamlined and computationally efficient framework for handling to many of the
problems associated with the classical SVM approach. In tandem with these algorithms we also develop Gibbs sampling
approaches to these methods to facilitate comparisons with an ‘‘exact’’ approach to these models.

In Section 2we provide the framework for our approach. In Section 3we consider various extensions including automatic
penalty parameter selection, group correlations, variable selection andmissing predictors respectively. In Section 4we show
how our approach offers several computational advantages over the classical SVM approach. In Section 5 we conclude.
Appendices contain details of our MCMC samplers.

Notation

The notation x ∼ N(µ,Σ) means that x has a multivariate normal density with mean µ and covariance Σ. If x has an
inverse gamma distribution, denoted as x ∼ IG(A, B), then it has density p(x) = BAΓ (A)−1x−A−1 exp(−B/x), x, A, B > 0. If
x has an inverse Gaussian distribution, denoted as x ∼ Inverse-Gaussian(µ, λ)with mean µ and variance µ3/λ, then it has
density

p(x) =


λ

2πx3
exp


−
λ(x− µ)2

2xµ2


, x, µ, λ > 0.

If x has a generalized inverse Gaussian distribution, denoted as x ∼ GIG(γ , ψ, χ), then it has density

p(x) =
(ψ/χ)γ /2

2Kγ (
√
ψχ)

xγ−1 exp

−

1
2

χ
x
+ ψx


, x, ψ, χ > 0, γ ∈ R,

where Kγ (·) is a modified Bessel function of the second kind. If x is a vector of length d then diag(x) is the d × d diagonal
matrix whose diagonal elements are x. If X is a d× dmatrix then dg(X) is the vector of length d comprising of the diagonal
elements of X . The jth column of a matrix X is denoted as Xj.

2. Methodology

In this section we present a VB approach to a Bayesian SVM classification formulation for binary classification problems.
After introducing Bayesian SVMs and VB methodology we describe the latent variable SVM representation of Polson and
Scott (2011) which gives rise to our basic VBSVM approach.

2.1. Bayesian support vector machines

Consider a training set {yi, xi}ni=1, where xi ∈ Rp represents an input vector and yi ∈ {−1,+1} the corresponding class
label. SVMs can be formulated in terms of finding a hyperplane that separates the observations with yi = 1 from those
with yi = −1 with the largest minimal separating distance or margin. In general such a hyperplane does not exist and the
problem needs to be reformulated as a trade-off between the size of the margin and infringements caused by points being
on the wrong side of the hyperplane (for more details see for example Vapnik, 1998 or Chapter 12 of Hastie et al., 2009).
This optimization problem amounts to finding β ∈ Rp which minimizes

min
β

J(β) =


n

i=1

(1− yixTi β)+


+ α∥β∥2, (1)

where α is a positive penalty parameter (the choice of which we will discuss later) and x+ = max(0, x). Larger values
of α serve to shrink the fitted values of the β coefficients. The above problem can be reformulated as a convex quadratic
programming problem and can be solved using a variety of efficient methods (for example Chapter 7 of Cristianini and
Shawe-Taylor, 2000). This results in the classification rule sign(xTi β) for input vector xi.

The terms (1 − yixTi β)+ in (1) are referred to as the hinge loss of the data and using a logarithmic scoring rule
interpretation (Bernardo, 1979) can be interpreted as negative conditional log-likelihoods. This has motivated the Bayesian
SVM formulations where

pℓ(yi|β) = exp

−(1− yixTi β)+


, 1 ≤ i ≤ n, and β ∼ N


0, 1

2α
−1Ip


, (2)
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