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Abstract

In recent years, the use of copulas has grown extremely fast and with it, the need for a simple and reliable method to choose the
right copula family. Existing methods pose numerous difficulties and none is entirely satisfactory. We propose a Bayesian method to
select the most probable copula family among a given set. The copula parameters are treated as nuisance variables, and hence do not
have to be estimated. Furthermore, by a parameterization of the copula density in terms of Kendall’s �, the prior on the parameter
is replaced by a prior on �, conceptually more meaningful. The prior on �, common to all families in the set of tested copulas,
serves as a basis for their comparison. Using simulated data sets, we study the reliability of the method and observe the following:
(1) the frequency of successful identification approaches 100% as the sample size increases, (2) for weakly correlated variables,
larger samples are necessary for reliable identification.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

In order to extrapolate extreme quantiles from data sets, or to generate random variables, it is usually necessary to
select a distribution function matching the available data. The choice of the best distribution is not an exact science and
relies on guesswork and testing of multiple hypotheses. Since each hypothesis comes with its particular test, the whole
procedure is too complicated for end-users and generally left to experts, along with the interpretation of the results.
Furthermore, existing methods cannot compare distributions without specifying an optimal parameter set for each
one of them. The selection of the best distribution is thus intertwined with the estimation of parameters, a non-trivial
problem itself.

The situation is even worse in the case of two-dimensional distributions, for which even more parameters need to be
estimated. Fortunately, the elegant concept of copulas greatly simplifies matters. Copulas are multivariate distributions
modeling the dependence structure between variables, irrespective of their marginal distribution. They allow to choose
completely different margins, the dependence structure given by the copula, and merge the margins into a genuine
multivariate distribution. The choice of the best bivariate distribution can then be done in two steps: choose the optimal
margins, and then choose the optimal copula. In this paper, we introduce a simple Bayesian method to choose the “best”
copula, given some bivariate data expressed by quantiles.

∗ Corresponding author. Tel.: +1 418 6543789; fax: +1 418 6542600.
E-mail addresses: david.huard@ete.inrs.ca (D. Huard), guillaume.evin@ete.inrs.ca (G. Évin), anne-catherine_favre@ete.inrs.ca (A.-C. Favre).

0167-9473/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2005.08.010

http://www.elsevier.com/locate/csda
mailto:david.huard@ete.inrs.ca
mailto:guillaume.evin@ete.inrs.ca
mailto:anne-catherineprotect LY1	extunderscore favre@ete.inrs.ca


810 D. Huard et al. / Computational Statistics & Data Analysis 51 (2006) 809 –822

The structure of the paper is as follows Section 1 introduces the main ideas of copula theory. Section 2 reviews
existing approaches to select copulas and highlights salient features. Section 3 describes the proposed method and its
derivation from Bayes’ theorem. Results from numerical simulations are shown in Section 4, along with their analysis.
Finally, we draw conclusions on the overall performance of the method and propose ideas for future work.

1. Copula theory

The concept of copula has been introduced by Sklar (1959) in the following way

Copula Definition. A copula is a joint distribution function of standard uniform random variables. That is,

C
(
u1, . . . , up

)= Pr
{
U1 �u1, . . . , Up �up

}
,

where Ui ∼ U(0, 1) for i = 1, . . . , p.

For a more formal definition of copulas, the reader is referred to Nelsen (1999). Using the probability integral
transformation, it is straightforward to see that a copula computed at F1 (x1) , F2 (x2) , . . . , Fp

(
xp

)
is identical to the

multivariate distribution function F evaluated at
(
x1, . . . , xp

)
, i.e.,

C
(
F1 (x1) , F2 (x2) , . . . , Fp

(
xp

))= F
(
x1, x2, . . . , xp

)
.

This last equality gives a first insight of the link between distribution functions and copulas, which is the content of
Sklar’s theorem.

Sklar’s Theorem. Let F be a p-dimensional distribution function with margins F1, F2 . . . , Fp, then there exists a
p-copula C such that for all x in R̄p,

F
(
x1, x2, . . . , xp

)= C
(
F1 (x1) , F2 (x2) , . . . , Fp

(
xp

))
,

where R̄ denotes the extended real line [−∞, ∞]. If F1, . . . , Fp are all continuous, then C is unique. Otherwise, C is
uniquely determined on Ran (F1) × Ran (F2) × · · · × Ran

(
Fp

)
, where Ran stands for the range.

According to Sklar’s theorem, copulas separate marginal behavior, as represented by the Fi’s, from the dependence
structure. This constitutes one great advantage of copulas. In the usual representation of joint probabilities via multivari-
ate distribution functions, the two cannot be separated. The general theory about copulas is summarized in Joe (1997),
Nelsen (1999) or more recently in Cherubini et al. (2004). Copulas have been widely used in financial mathematics
to determine the Value at Risk (see for example, Embrechts et al., 2002, 2003; Bouyé et al., 2000). Other fields of
applications involve lifetime data analysis (Bagdonavicius et al., 1999), actuarial science (Frees and Valdez, 1998), and
more recently, hydrology (De Michele and Salvadori, 2003; Favre et al., 2004).

Most copula applications are concerned with bivariate data. One reason for this is that relatively few copula families
have practical p-dimensional generalization. The popular Archimedean 2-copulas (Genest and MacKay, 1986) for
instance, have two known generalizations, both of them afflicted by serious shortcomings. Archimedean 2-copulas are
defined as

C (u1, u2) =
{

�−1 (� (u1) + � (u2)) if
∑2

i=1 � (ui) ��(0),

0 otherwise

with �(u) a C2 function satisfying �(1) = 0, �′(u) < 0 (� is decreasing) and �′′(u) > 0 (� is convex) for all 0�u�1.
�(u) is called the generator of the copula. The first generalization, termed symmetric (Joe, 1997), uses the same
generator, thus the same dependence, for all variables

C
(
u1, . . . , up

)= �−1 (� (u1) + · · · + �
(
up

))
.

Since all variables are described by the same dependence, this generalization is too simplistic for most real life
applications. The second generalization, termed asymmetric (Whelan, 2004), uses (p − 1) generators. For p = 3, the
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