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Abstract

Most dimension reduction techniques produce ordered coordinates so that only the first few coordinates need be considered in
subsequent analyses. The choice of how many coordinates to use is often made with a visual heuristic, i.e., by making a scree plot
and looking for a “big gap” or an “elbow.” In this article, we present a simple and automatic procedure to accomplish this goal by
maximizing a simple profile likelihood function. We give a wide variety of both simulated and real examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In modern applications, we often encounter high-dimensional data. More often than not, the intrinsic dimensionality
of the data is much lower, i.e., even though the data are lying in a high-dimensional space, only a few dimensions
are actually important for the analysis. Various dimension reduction techniques are available. Suppose x ∈ Rp is a
p-dimensional vector for some relatively large p. Most of these dimension reduction techniques will produce ordered
mappings from Rp to R, say �1(x), �2(x), . . . , �m(x) where m�p, such that �1(x) is the most important coordinate,
�2(x) is the next most important coordinate, and so on. Associated with each mapping is a measure of its relative
importance, say d1 �d2 � · · · �dm, so that the resulting coordinates can be ordered in a meaningful way. Dimension
reduction is then achieved by selecting only the top few coordinates.

The problem that we shall focus on in this article is that of deciding how many coordinates should be retained.
Ideally, if the intrinsic dimensionality is, say 3, we would like to see d1, d2, d3 > 0 and dj = 0 for all j > 3. However,
this seldom happens because the data are often noisy.

To review some of the commonly used techniques for making such a decision, it is convenient to focus on the
case of principal component analysis (PCA), which is perhaps the best-known dimension reduction technique of all.
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Fig. 1. A first example. Suppose the eigenvalues are 10, 9, 3, 2, 1; there exists a “big gap” between the second and third eigenvalues.

Given data x ∈ Rp, the principal components are defined by unit vectors �1, �2, . . . , �p ∈ Rp such that
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Therefore, PCA produces mappings from Rp to R that are simply projections, i.e., �j (x) = �T
j x, and the importance

of mapping j is simply measured by the marginal variance along the projection, i.e., dj =Var
(
�T
j x

)
. Mardia et al. (1979)

give a nice overview of PCA as well as other related multivariate techniques. Let S be the sample variance–covariance
matrix of the data; the principal components �1, �2, . . . , �p are simply the eigenvectors of S, and d1 �d2 � · · · �dp

are simply the (ordered) eigenvalues of S.
In order to determine how many principal components are needed, a number of approaches are available; Jolliffe

(2002, Chapter 6) gave perhaps the most comprehensive and up-to-date summary on the status of the current practices.
These methods can be roughly classified into the following categories although within each category there are still
various minor variations:

(1) Percent variance: Find the smallest number of components to capture a certain percentage of the total variance,
i.e., retain the top q components where q is the smallest integer between 1 and p such that

d1 + d2 + · · · + dq

d1 + d2 + · · · + dp

��,

where � is a pre-determined level, say, 80% or 90%.
(2) Scree plot: Plot the eigenvalues d1, d2, . . . , dp in descending order (often called a scree plot) and look for a “big

gap” or an “elbow” in such a graph. For example, as illustrated in the left panel of Fig. 1, there is a “big gap”
between the second and third eigenvalues, so the first two principal components are retained and the rest, discarded.

(3) Sequential tests: Sequentially conduct a series of formal hypothesis tests to determine whether the small eigenvalues
are equal. For j = 1, 2, . . . , p − 1, consider a series of null hypotheses:

H0,j : dp = dp−1 = · · · = dp−j .

We start by testing H0,1, H0,2 and so on until a null hypothesis is first rejected. Suppose H0,q is the first rejected
null hypothesis, then the first p − q components are retained.

(4) Resampling: Estimate the null distribution of each dj by resampling the data repeatedly, e.g., via permutation or
the bootstrap. Retain component j if dj exceeds the 95 percentile of the corresponding null distribution and discard
component j if otherwise.
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