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Abstract

The normal Bayesian linear model is extended by assigning a flat prior to the Jdth power of the variance components of the
regression coefficients (0 <0< %) in order to improve prediction accuracy. In the case of orthonormal regressors, easy-to-compute
analytic expressions are derived for the posterior distribution of the shrinkage and regression coefficients. The expected shrinkage
is a sigmoid function of the squared value of the least-squares estimate divided by its standard error. This gives a small amount of
shrinkage for large values and, provided ¢ is small, heavy shrinkage for small values. The limit behavior for both small and large
values approaches that of the ideal coordinatewise shrinker in terms of the expected squared error of prediction, when ¢ is close to
0. In a simulation study of wavelet denoising, the proposed Bayesian shrinkage model yielded a lower mean squared error than soft
thresholding (lasso), and was competitive with two recent wavelet shrinkage methods based on mixture prior distributions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Shrinkage of the coefficients in regression models aims at improving the predictive performance of such models.
The best known shrinkage methods (Brown et al., 2002; Hastie et al., 2001) are proportional shrinkage (Breiman
and Friedman, 1997; Copas, 1983), and methods based on ridge regression (Hoerl and Kennard, 1970) and the lasso
(Tibshirani, 1996). In the orthonormal case, the lasso gives the soft thresholding rule and ridge leads to proportional
shrinkage (Hastie et al., 2001). These methods share the feature that all coefficients are shrunken regardless of whether
the coefficients are small or large in a statistical sense. This is counterintuitive. It appears that this form of shrinkage is
not a prerequisite for good predictive power. Bayesian methods that shrink the small coefficients, but shrink the large
coefficients only slightly have been devised for wavelet smoothing and have excellent predictive power (Abramovich
et al., 2004, 1998; Clyde et al., 1998; De Canditiis and Vidakovic, 2004; Johnstone and Silverman, 2004). These
methods are based on the prior belief that only a few coefficients contain the main part of the signal. The prior of the
coefficients is specified as a mixture of two distributions. These Bayesian models require at least two hyperparameters
(one for the mixing weight and one or more for the component distributions), whereas ridge regression and the lasso
have only a single tuning parameter. Extending a proposal by Xu (2003), ter Braak et al. (2005) proposed a Bayesian
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linear model with a single hyperparameter to tune the shrinkage. In this model, each coefficient has a normal prior with
its own specific variance. Each variance is given an improper prior that depends on a single hyperparameter 0. This
prior is not a limiting case of the common inverse Gamma prior. In an application in genetics the model successfully
detected the influential regressors from a large pool (ter Braak et al., 2005).

In this paper I study the shrinkage properties of the model in the case of orthogonal regressors and known error
variance. In Section 2, I derive analytic expressions for the posterior distribution of the shrinkage and regression
coefficients and show that the expected shrinkage in this model is a sigmoid function of z-ratio (estimate/standard
error), with effectively no shrinkage for large z-ratios. As an illustration of the utility of Bayesian sigmoid shrinkage, I
apply itin Section 3 to the problem of wavelet shrinkage. I show by simulation that the method yields lower mean squared
prediction error than the well-known Sure—Hybrid shrinkage (Donoho and Johnstone, 1995), which uses the lasso. The
method is competitive with two recent methods, Bayesian block shrinkage (De Canditiis and Vidakovic, 2004), a
convex combination of two ridge shrinkage estimators, and empirical Bayes thresholding (Johnstone and Silverman,
2005). In the discussion shrinkage methods are compared with the ideal shrinker. Bayesian sigmoid shrinkage is the
only parameterized method in the comparison that approaches the ideal shrinkage for both very small and very large
z-ratios.

2. Bayesian sigmoid shrinkage

Consider the linear regression model
y=Xb+e (1)

with y an n-vector of responses of n individuals and X an n x p matrix with fixed known values of p predictors for these
individuals, b a p-vector of regression coefficients and e an n-vector of independent normal noise with zero mean and
variance o2, which we assume known for now. The jth column of X is denoted by x ;- The model is made Bayesian by

adding a prior distribution for b. We assume that b|G ~ N (0 P> G) with 0, a zero vector and G = diag (a%, el of,).
The new feature of our model, which makes it different from Bayesian ridge regression, is to set independent improper
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6;i—1
priors for the variance components a? (j=1,..., p) with, for the jth component, p (a?) x (a j> ! or, equivalently,

20; . < L. . -
p (aj J) o 1with0 <9; < % The range restriction to the hyperparameters ¢ ; guarantees that the posterior distribution

for b is proper, as we will see shortly. Indeed, 6; = 0 gives p <log (03)) o 1, which is known to yield an improper

posterior distribution(O’Hagan, 1994) and 9 ; = % gives p (o j) o 1, which yields an improper posterior distribution for
03, but a proper posterior for b; (see below). The hyperparameters can be taken equal (5 =01=---=90 p) or divided
into groups of equal values, as in the wavelet application in Section 3. Because p(bly, G) is multivariate normal, the
posterior distribution of the variance components, can be shown (O’Hagan, 1994) to have density

51— - =172 TXv-IXT
p(a%,...,ai‘y) 0((:?(01 D X - X oi(é” 1)‘I+0_2XTXG‘ exp (% 2)

with V = XTX + ¢?G~!. Standard Markov chain Monte Carlo techniques can be used to obtain a sample of this
posterior, either by a Metropolis Hasting algorithms or by Gibbs sampling (ter Braak et al., 2005; Xu, 2003).

The posterior mean of b, given G, is b = Sb with b = (XTX)_IXTy, the least-squares estimator of b, and S the
shrinkage matrix (Brown et al., 2002)

S= (XTX + GZG_I)AXTX.

To gain insight in the shrinkage properties of the model we consider the special case of orthogonal predictors where S
is a diagonal matrix with shrinkage coefficients

= (W /1) M= /(14 597). N
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