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a b s t r a c t

Bayesian variable selection in quantile regression models is often a difficult task due to
the computational challenges and non-availability of conjugate prior distributions. These
challenges are rarely addressed via either penalized likelihood function or stochastic search
variable selection. These methods typically use symmetric prior distributions such as a
normal distribution or a Laplace distribution for regression coefficients, which may be
suitable for median regression. However, an extreme quantile regression should have
different regression coefficients from the median regression, and thus the priors for
quantile regression should depend on the quantile. In this article an extension of the
Zellners prior which allows for a conditional conjugate prior and quantile dependent prior
on Bayesian quantile regression is proposed. Secondly, a novel prior based on percentage
bend correlation for model selection is also used in Bayesian regression for the first
time. Thirdly, a new variable selection method based on a Gibbs sampler is developed to
facilitate the computation of the posterior probabilities. The proposedmethods are justified
mathematically and illustrated with both simulation and real data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression has been the subject of great theoretical
interest as well as numerous practical applications in a number of fields such as econometrics, finance, biomedical studies,
social sciences, and survival analysis; Koenker (2005) and Yu et al. (2003) for a comprehensive review. One of the attractions
of quantile regression over its classical mean regression counterpart lies in its flexibility in providing a more complete
investigation of the entire distribution of the relationship between a response variable and its covariates. To this end,
quantile regression has gradually emerged as a comprehensive extension to standard mean regression. Suppose that we
have a sample (x′

1, y1), . . . , (x
′
n, yn). Then, the pth quantile regression takes the form of

Q yi(p|xi) = x′

iβp, 0 < p < 1, (1)

where each yi is the response variable, x′

i = (xi1, . . . , xik) is a 1 × k vector denoting the ith row of the n × k matrix of
covariates X , the unknown quantity βp is a vector of k regression parameters and Q yi(·) = F−1

yi (·) is the inverse of the
cumulative distribution function of the response variable yi conditional on x′

i . Koenker and Bassett (1978) demonstrate that
the regression coefficient vector βp can be estimated consistently as the solution to the minimization of

n
i=1

ρp(yi − x′

iβp), (2)
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where ρp(·) is the check function defined by

ρp(t) =
|t| + (2p − 1)t

2
. (3)

Since (2) is not differentiable at the origin, there is no closed formsolution forβp (Koenker, 2005). However, theminimization
of (2) can be achieved through implementation of the algorithm proposed by Koenker and D’Orey (1987). Alternatively,
Koenker andMachado (1999) noted that the check function (2) is closely related to the asymmetric Laplace distribution and
consequently the unknown parameters βp can be estimated through exploiting this link.

From a Bayesian point of view, Yu and Moyeed (2001) proposed a Bayesian modeling approach of quantile regression
using the asymmetric Laplace error distribution and sampling βp from its posterior distribution using Markov chain Monte
Carlo (MCMC) methods. The authors used improper uniform prior distributions for all the regression coefficients.

A serious challenge in Bayesian quantile regression lies in specifying a quantile dependent prior. Additionally, despite
having attracted a great deal of attention in the literature, see Tsionas (2003), Scaccia and Green (2003), Schennach (2005),
Dunson and Taylor (2005), Geraci and Bottai (2007), Taddy and Kottas (2007), Yu and Stander (2007), Kottas and Krnjajic
(2009), Kozumi and Kobayashi (2009), Reed and Yu (2009), Lancaster and Jun (2010), Li et al. (2010), Reich et al. (2010),
Yuan and Yin (2010), Yue and Rue (2010), Benoit and Poel (2010), Taddy and Kottas (2007) and Gerlach et al. (2011), it is
well known that for the Bayesian inference quantile regression proposed by Yu and Moyeed (2001) and Yu and Stander
(2007) a standard conjugate prior distribution is not available. While the aforementioned Bayesian inference models cover
parametric, semi-parametric as well as nonparametric approaches almost all of these models set priors independent of the
values of quantiles. That is, the same prior used for modeling different order of quantiles. In so doing, this approach may
result in inflexibility in quantile modeling. For example, a 95% quantile regression model should have different parameter
values from the median quantile, and thus the priors used for modeling the quantiles should be different (Alhamzawi and
Yu, 2011; Alhamzawi et al., 2011). It is therefore more reasonable to set different priors for different quantiles.

A second serious challenge in quantile regression lies in Bayesian variable selection, due to the challenge in specifying
a quantile dependent prior over model space. At present time, all Bayesian variable selection approaches in quantile
regression set priors independent of the value of quantiles over model space (see, Reed et al., 2009 and Ji et al., 2011, among
others). Finally, another serious challenge encountered inmodeling with Bayesian quantile regression lies in computational
efficiency.

In this article we address these three issues. For the first, it is quite important to elicit a prior distribution for quantile
regression coefficients that is as informative as possible, and more crucially, that depends on the quantile level. In order to
address this challenge a quantile dependent conjugate prior distribution is proposed. For the second, the percentage bend
correlation is used to obtain suitable priors over model space and to address the third difficulty a new Gibbs sampler is
proposed to facilitate the computations.

The rest of this article is organized as follows. Section 2 introduces amodification of Zellners g-prior in quantile regression
as well as presenting the BayesianMCMC estimation procedure. An outline of prior assumptions and a simple Gibbs sampler
for model selection are addressed in Section 3, and in Section 4 the appropriateness of the ALD-based posterior distribution
is justified. In Section 5 simulation studies are conducted to examine the performance of the proposed approaches formodel
selection and estimation, Section 6 provide an illustration of the proposed methods using real data examples and finally, in
Section 7, we conclude the article with a brief discussion.

2. Methods

2.1. Zellner’s informative g-prior

It is well known that conjugate priors play the most crucial role in Bayesian analysis, as it is desirable to have conditional
distributions as the prior in terms of the same functional form and similar properties (Chen and Ibrahim, 2003). In standard
mean regression, various approaches for assessing the prior distribution for regression coefficients and the variance in
the nature of conjugate form have been proposed over the years. However, it is difficult to assess the prior covariances
matrix for regression coefficients (Zellner, 1983; Agliari and Parisetti, 1988). For this reason, Zellner (1983, 1986) proposed
a procedure for assessing a conjugate prior distribution referred to as Zellner’s informative g-prior, or simply, g-prior (Agliari
and Parisetti, 1988).

Zellner’s informative g-prior has beenwidely used in the context of Bayesian analysis for themean regressionmodels due
to the fact that analytical results are more readily available, computational efficiency and its simple interpretation (Krishna
et al., 2008). For a normal regression model

y = Xβ + e, e ∼ N(0, σ 2I),

with a vector of regression coefficients β, Zellner’s informative g-prior based on n observations and k predictors can be
written as

p(β, σ |βa, σa, y,X) ∝ σ−(n−k+1) exp{−(n − k)σ 2
a /2σ

2
}σ−k exp


−(β − βa)

′X ′X(β − βa)/2gσ
2 , (4)
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