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a b s t r a c t

This paper is concerned with estimation and testing in data sets consisting of a small
number (about 20–30) of curves observed at unevenly distributed spatial locations. Such
data structures may be referred to as spatially indexed functional data. Motivated by an
important space physics problem, we model such data as a mean function plus spatially
dependent error functions. Given a small number of spatial locations, the parametric
methods for the estimation of the spatial covariance structure of the error functions are
not satisfactory. We propose a fully nonparametric estimator for the mean function. We
also derive a test to determine the significance of the regression coefficients if the mean
function is a linear combination of known covariate functions. In particular, we develop
methodology for the estimation a trend in spatially indexed functional data, and for
assessing its statistical significance. We apply the new tools to global ionosonde records
to test the hypothesis of ionospheric cooling. Nonparametric modeling of the space–time
covariances is surprisingly simple, much faster than those previously proposed, and less
sensitive to computational errors. In simulated data, the new estimator and test uniformly
dominate those based on parametric modeling.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Models for data which exhibit both space and time dependence have attracted increasing attention in geophysical and
environmental research. This is a fast growing branch of statistics, for a general overview see Cressie and Wikle (2011)
and Sherman (2011), for a fast, accessible introduction, we recommend (Gneiting et al., 2007). Space–time data could be
roughly separated into several categories according to the amount of information contained, respectively, in their spatial
and temporal components. One category is the datawhichhave a very rich spatial component and relatively limited temporal
component. Suchdata usually come fromsatellites, see e.g. Jun and Stein (2009), Cressie et al. (2010) andKatzfuss andCressie
(2011), amongmany others. Another category is data which have a rich temporal component and a relatively limited spatial
component. Such data come typically as collections of long time series recorded at different spatial locations by ground based
instruments. For example, the Irish wind data studied by Haslett and Raftery (1989) and consequently used in many other
papers, the Canadian weather data extensively used in Ramsay and Silverman (2005) and Ramsay et al. (2009), pollution
data studied by Bowman et al. (2009), and many others.

In this paper, we propose a flexible, fully nonparametric methodology for data of the latter type. It includes estimation
of the mean function and is applied to testing the statistical significance of a linear trend. Our methodology builds on the
theory of Hall et al. (1994) and Hall and Patil (1994) by (1) developing a practically applicable tool set for the estimation and
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testing in the spatial context with few data locations, (2) extending it to the framework of spatially indexed functional data,
(3) developing suitable confidence bounds, and (4) applying it to an important space physics problem. The work presented
in this paper is a direct result of our attempts to solve this important space physics problem in a fairly conclusive manner
that would be satisfactory to the space physics community. Since the problem concerns the detection of a long term (many
decades) trend, we hope that out methodology is general and useful enough to be applicable to other similar data sets and
problems. Spatially indexed functional data have been the focus of several recent studies, see Delicado et al. (2010); Giraldo
et al. (2011), Nerini et al. (2010), Gromenko et al. (2012) and Gromenko and Kokoszka (forthcoming). Existing approaches
however often fail when the number of spatial locations is small because in such cases the numerical optimization required
to fit a parametric spatial model may fail, or the fit may be poor. The research we report is, to a large extent, a result of
computational difficulties we encountered with standard approaches. The resulting new methodology is computationally
faster and the algorithms never fail to converge (in our data sets and simulations).

The paper is organized as follows. In Section 2, we develop a nonparametric covariance estimation procedure for scalar
data. Next, in Section 3, a statistical model for spatially indexed functional data is introduced. Section 4 presents the
estimation procedure for this model. In Section 5, we derive a test for assessing the significance of regression coefficients
when the mean function is a linear combination of known covariate functions. The application of this test to the assessment
of a long term cooling trend in the ionosphere is presented in Section 6. Section 7 presents the results of simulation studies
that validate the methodology we propose and its application to the ionosonde data.

2. Description of the method for scalar data

In this section, we assume that ζ is a mean zero stationary and isotropic scalar random field observed at locations
s1, s2, . . . , sN , and Γ is the N × N matrix of covariances

γ (dkℓ) = Cov(ζ (sk), ζ (sℓ)) = E[ζ (sk)ζ (sℓ)],

where dkℓ is the distance between sk and sℓ. Estimation of Γ is not trivial for small samples. A standard variogram based
estimator for small spatial data sets is generally unstable, and the the optimization often fails to converge. It is recommended
that every lag interval should contain at least 30 distinct distances, but for small sample sizes, it is difficult to meet this
conditionwithout reducing the number of intervals to a level whichmakes fitting a parametricmodel difficult.We therefore
develop nonparametric methodology, based on the work of Hall et al. (1994) and Hall and Patil (1994), which is suitable for
small data sets. It forms the basis of the estimation and testing procedures for functional spatially indexed data, but can also
be used for different spatio-temporal models, as illustrated in Example 7.1.

Recall that dkℓ is the distance between sk and sℓ, and consider the preliminary estimator

γ̃ (dkℓ) = ζ (sk)ζ (sℓ). (1)

It is possible that for some distances there exist several distinct estimators γ̃ (dkℓ), in fact for dkℓ = 0 there are always N
different preliminary estimators. The estimated covariances are ordered so that the correspondingdistances donot decrease:
denoting the dkℓ by di, we thus have di ≤ di+1, 1 ≤ i ≤ N(N +1)/2. The resulting sequence {γ̃ (di) : 1 ≤ i ≤ N(N + 1)/2} is
very noisy andmust be smoothed.We use local linear regression, see Fan andGijbels (1996), rather than the kernel smoother
suggested by Hall et al. (1994). The reason for using the local linear regression is that it introduces a slightly smaller bias
for small and large distances di. Let κ(x) be a compactly supported symmetric probability density function. The smoothed
value of γ (d) is thus estimated by m̂(d) computed by minimizing

(m̂(d), m̂1) = arg min
m,m1

N(N+1)/2
i=1

κ


d − di

h


{γ̃ (di) − m(d) − m1(d − di)}

2
. (2)

Weperformed simulations using several popular kernels (triangular, quadratic, Epanechnikov, triweight, tricube), and found
that they produce practically the same estimates. The results reported in this paper are based on the Epanechnikov kernel. As
with all problems of this type, themost difficult issue is the selection of the bandwidth h; Hall et al. (1994) do not recommend
any specific procedure. They developed an interactive software which allows the user to choose the bandwidth and visually
compare the resulting estimates. We describe our method of bandwidth selection in the Appendix.

To construct a positive definite covariance function, we use Bochner’s theorem: We compute the Fourier transform of m̂
and delete all negative lobes. The inverse Fourier transform is then our final estimator γ̂ (d). We enhance the idea of Hall
et al. (1994) by providing a procedure to construct functional confidence intervals for γ̂ (·), see the Appendix. The application
of the procedure to simulated data is illustrated in Fig. 1.

Hall et al. (1994) showed that to achieve consistency in the estimation of γ (d), the distance betweenmin(di) andmax(di)
(the range) must grow much slower than the number of the di. This condition is naturally satisfied in the spatial setting
because adding one more sk roughly increases the range at most by a unit, but increases the number of the di by N .
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