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a b s t r a c t

The use of theMarshall–Olkin transformation as a skewingmechanism is investigated. The
distributions obtained when this transformation is applied to several classes of symmetric
and unimodal distributions are analysed. It is shown thatmost of the resulting distributions
are not flexible enough tomodel data presenting high ormoderate skewness. The only case
encounteredwhere theMarshall–Olkin transformation can be considered a useful skewing
mechanism is when applied to Student-t distributions with Cauchy or even heavier tails.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The need formodelling data presenting departures from symmetry has fostered the development ofmore flexible classes
of distributions. A popular approach is tomodify a symmetric distribution by introducing a parameter that controls skewness
(Azzalini, 1985; Fernández and Steel, 1998; Jones, 2004; Ferreira and Steel, 2006).

In the context of reliability and survival analysis, Marshall and Olkin (1997) proposed a transformation of a distribution
F(x; θ) that introduces a new parameter γ > 0. This transformation is defined through the cumulative distribution function
(cdf)

G(x; θ, γ ) =
F(x; θ)

F(x; θ) + γ (1 − F(x; θ))
, (1)

and assuming continuity of F throughout, the corresponding probability density function (pdf) is given by

g(x; θ, γ ) =
γ f (x; θ)

[F(x; θ) + γ (1 − F(x; θ))]2
. (2)

The interpretation of the parameter γ is given in Marshall and Olkin (1997) in terms of the behaviour of the ratio of
hazard rates of F and G. This ratio is increasing in x for γ ≥ 1 and decreasing in x for 0 < γ ≤ 1. This transformation is
then proposed for the Exponential andWeibull distribution in Marshall and Olkin (1997) in order to generate more flexible
models for lifetime data. Clearly, for γ = 1, G and F coincide.

Using the fact that the distribution in (1) describes awider class than the original distribution F , García et al. (2010) define
a generalised normal distribution (GN) by applying this transformation to a normal distribution F . They investigate the role of
γ as a skewness parameter using the standardised third centralmoment EM = µ3/µ

3/2
2 as a skewnessmeasure (Edgeworth,

1904). In a similar search for families of skewed distributions, George and George (forthcoming) apply the Marshall–Olkin
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transformation to the characteristic function of an Esscher transformed Laplace distribution (which, interestingly, leads to
a very simple two-piece distribution with inverse scale factors, used later to generate data in Section 3.2). Maiti and Dey
(2012) propose exactly the same distribution as the GN of García et al. (2010) and call it the tilted normal distribution.
However, they focus mostly on its use for modelling survival data and less on the skewness properties.

We will focus here on the use of the Marshall–Olkin transformation in (1) as a mechanism for inducing skewness
in symmetric and unimodal distributions F which are defined over the entire real line. It is immediate from (2) that
g(x; θ, γ ) = g(−x; θ, 1/γ ), which means that usual measures of skewness will change sign by inverting γ and that
superficially suggests γ plays the part of a skewness parameter. Perhaps the most obvious choice for F is the normal,
as explored by García et al. (2010) and Maiti and Dey (2012), and we will first investigate the wider class of Student-t
distributions.

In Section 2 we study the tail behaviour induced by the Marshall–Olkin transformation and in the next section we define
a generalised t distribution based on the transformation in (1). We explore the role of the parameter γ in the generalised
t and the generalised normal distributions using different measures of skewness and we show that the standardised third
central moment can lead to counterintuitive conclusions about the shape of the density. In fact, if we use a differentmeasure
of skewness based on the relative mass both sides of the mode, it becomes clear that the Marshall–Olkin transformation
applied to normal and Student-t distributions with tails that are not extremely fat is unable to accommodate evenmoderate
amounts of skewness. Section 3.2 illustrates thiswith some simulated data. Section 4 examines the use of theMarshall–Olkin
transformation onother classes of distributions and Section 5provides some intuitive explanation of the observedbehaviour.
Finally, we conclude that theMarshall–Olkin transformation cannot generally be used as a skewingmechanism for unimodal
symmetric distributions, and we find only one exception: the Student-t distribution with Cauchy or even heavier tails.

2. Tail behaviour

Marshall and Olkin (1997) proved existence of moments of (1) for the cases when F is Exponential or Weibull. The next
Theorem shows that this transformation preserves moment existence for general F .

Theorem 1. The moments of (1) exist for exactly the same order as in the original distribution F .
Proof. Note that if γ < 1, then

γ <
γ

[F(x; θ) + γ (1 − F(x; θ))]2
<

1
γ

.

If γ > 1, then

1
γ

<
γ

[F(x; θ) + γ (1 − F(x; θ))]2
< γ .

Therefore

g(x; θ, γ ) = K(x, θ, γ )f (x; θ),

where K(x, θ, γ ) takes values in between min{γ , 1/γ } and max{γ , 1/γ }. The result follows. �

Theorem 1 shows that transformation (1) produces a distribution with exactly the same tail behaviour as the original.

3. Generalised t

We now define a generalised t (Gt) distribution by applying the Marshall–Olkin transformation to the Student-t
distribution.

Definition 2. A random variable X is distributed according to the generalised t distribution if its cdf and pdf are given by

Gt(x; µ, σ , ν, γ ) =
F(x; µ, σ , ν)

F(x; µ, σ , ν) + γ (1 − F(x; µ, σ , ν))
, (3)

gt(x; µ, σ , ν, γ ) =
γ f (x; µ, σ , ν)

[F(x; µ, σ , ν) + γ (1 − F(x; µ, σ , ν))]2
, (4)

where F and f are the cdf and pdf of a Student-t distribution with location µ, scale σ and ν degrees of freedom.

Fig. 1 shows some examples of density (4) for different choices of the parameters. Of course, panel (a) is just the Student-
t , whereas panel (b) corresponds to γ = 0.5 and (c) is for γ = 2. Visually, two things are worth noting about Fig. 1: the
densities generated do not seem highly skewed (even though γ is rather far from one), especially for larger values of ν, and
the amount of skewness seems to depend on the value of ν. This would suggest that ν and γ cannot straightforwardly be
assigned roles as tail and skewness parameters, respectively.

Just as in the symmetric case, the generalised normal distribution (GN) (García et al., 2010) is a limiting case of the Gt
distribution, since limν→∞ Gt(x; µ, σ , ν, γ ) = GN(x; µ, σ , γ ).
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