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a b s t r a c t

The paper addresses a common problem in the analysis of high-dimensional high-
throughput ‘‘omics’’ data, which is parameter estimation across multiple variables in a
set of data where the number of variables is much larger than the sample size. Among
the problems posed by this type of data are that variable-specific estimators of variances
are not reliable and variable-wise tests statistics have low power, both due to a lack of
degrees of freedom. In addition, it has been observed in this type of data that the variance
increases as a function of themean.We introduce a non-parametric adaptive regularization
procedure that is innovative in that (i) it employs a novel ‘‘similarity statistic’’-based
clustering technique to generate local-pooled or regularized shrinkage estimators of
population parameters, (ii) the regularization is done jointly on population moments,
benefiting fromC. Stein’s result on inadmissibility, which implies that usual sample variance
estimator is improved by a shrinkage estimator using information contained in the
sample mean. From these joint regularized shrinkage estimators, we derived regularized
t-like statistics and show in simulation studies that they offer more statistical power in
hypothesis testing than their standard sample counterparts, or regular common value-
shrinkage estimators, or when the information contained in the sample mean is simply
ignored. Finally, we show that these estimators feature interesting properties of variance
stabilization and normalization that can be used for preprocessing high-dimensional
multivariate data. The method is available as an R package, called ‘MVR’ (‘Mean–Variance
Regularization’), downloadable from the CRAN website.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction: estimation of population parameters

1.1. Scope—motivation

We introduce a regularization and variance stabilization method for parameter estimation, normalization and inference
of data with many variables. In a typical setting, this method applies to high-dimensional high-throughput ‘omics’-type
data, where the number of variable measurements or input variables (gene, peptide, protein, etc. . . . ) hugely dominates the
number of samples (so called p ≫ n paradigm). The data may be any kind of continuous covariates.

It is common to deal in high-dimensional setting with the following issues:
• A severe lack of degrees of freedom, generally due to tiny sample sizes (n ≪ 1), where usual variable-wise estimators

lack of statistical power (Storey et al., 2004; Smyth, 2004; Tong and Wang, 2007; Wang et al., 2009) and lead to false
positives (Efron et al., 2001; Tusher et al., 2001).
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• Spurious correlation and collinearity between a large number of variables (p ≫ 1) in part due to the nature of the
data, but most of which due to an artifact of the dimensionality (see Cai and Lv, 2007 and Fan and Lv, 2008 for a detailed
discussion). In addition, False Detection Rates (FDR) get high in part because of the regression-to-the-mean effect induced
by correlated parameter estimates (Ishwaran and Rao, 2005).

• Variables in high-dimensional data recurrently exhibit a complex mean–variance dependency with standard deviations
severely increasing with the means (Rocke and Durbin, 2001; Huber et al., 2002; Durbin et al., 2002), while statistical
procedures usually assume their independence.

In general, statistical inference procedures rely on a set of assumptions about the ideal form of the data such as normality
of the measurements or errors, sample group homoscedasticity, and i.i.d variables. These issues make usual assumptions
unrealistic, usual moment estimators unreliable (generally biased and inconsistent), and inferences inaccurate. The goal of
this method is to get lower estimation errors of mean and variance population parameters and more accurate inferences in
high-dimensional data.

1.2. Estimation in high-dimensional setting

A largemajority of authors have used regularization techniques for estimating population parameters in high dimensional
data. The premise is that because many variables are measured simultaneously, it is likely that most of them will behave
similarly and share similar parameters. The idea is to take advantage of the parallel nature of the data by borrowing
information (pooling) across similar variables to overcome the problem of lack of degrees of freedom.

Non-parametric regularization techniques for variance estimation have shown that shrinkage estimators can
significantly improve the accuracy of inferences. Jain et al. (2003), proposed a local-pooled error estimationprocedure,which
borrows strength from variables in local intensity regions to estimate variability. Shrinkage estimation was used by Wright
and Simon (2003), Cui et al. (2005) and Ji and Wong (2005). Similarly to Jain et al., Papana and Ishwaran (2006) proposed a
strategy to generate an equal variancemodel. This is a formof variance stabilization that is achieved by quantile regularization
of sample standard deviations by means of a recursive partitioning (CART-like) algorithm, which was initially used in
Bayesian model selection (Ishwaran and Rao, 2005). Tong and Wang proposed a family of optimal shrinkage estimators for
variances raised to a fixed power (Tong andWang, 2007) by borrowing information across variables. The idea of borrowing
strength across variables was also recently exploited by Efron in gene sets enrichment analyses (Efron and Tibshirani, 2007),
and by Storey’s Optimal Discovery Procedure (ODP) to control for compound error rates in multiple-hypothesis testing
(Storey, 2007).

Shrinkage estimators have also been successfully combinedwith empirical Bayes approaches,where posterior estimators
have been shown to follow distributions with augmented degrees of freedom, greater statistical power, and far more stable
inferences in the presence of few samples (Lonnstedt and Speed, 2002; Smyth, 2004). Following this approach, Baldi and Long
estimated population variances by a weighted mixture of the individual variable sample variance and an overall inflation
factor selected using all variables (Baldi and Long, 2001). Lonnstedt and Speed (2002) and later Smyth (2004) proposed
an empirical Bayes approach that combines information across variables. Kendziorski et al. extended the empirical Bayes
method using hierarchical gamma–gamma and log-normal–normal models (Kendziorski et al., 2003).

In a similar vein, shrinkage estimation was also used to generate (Bayesian- or not) ‘‘moderated’’ statistics. There,
variable-specific variance estimators are inflated by using an overall offset. Efron et al. derived a t-test that estimates the
offset by using a percentile of the distribution of sample standard deviations (Efron et al., 2001). Tusher et al. (2001) and
Storey and Tibshirani (2003) added a small constant to the variable-specific variance estimators in their t-test to stabilize
the small variances (SAM). Smyth and Cui et al. proposed regularized t-tests and F-tests by replacing the usual variance
estimator with respectively a Bayesian-adjusted denominator (Smyth, 2004) or a James–Stein-based shrinkage estimator
(Cui et al., 2005).

A commonality to all previousmethod is that (i) they focus on variance estimation alone, (ii) they involve shrinkage of the
sample variance towards a global value, which is used for all variables. First, regularization of the variance is still a problem
if the variance depends on the mean and this dependency is ignored. For instance, denoting by yi,j the individual response
(expression level, signal, intensity, . . . ) of variable j ∈ {1, . . . , p} (gene, peptide, protein, . . . ) in sample i ∈ {1, . . . , n}, and
the usual population mean estimates by µ̂j =

1
n

n
i=1 yi,j and standard deviation estimates by σ̂ 2

j =
1

n−1

n
i=1(yi,j − µ̂j)

2,
clearly the assumption that a variance estimator can be used in common to all variables (i.e., an equal variancemodel where
σ 2
j = σ 2

0 for all j ∈ {1, . . . , p}) is unrealistic because of the mean-dependency issue, and because we still expect sampling
variability at play even if an homoscedastic model was true. Exploiting the observation that the variance is an unknown
function of the mean (Rocke and Durbin, 2001; Huber et al., 2002; Durbin et al., 2002) and Stein’s inadmissibility result on
variance estimators (Stein, 1964), it is clear that shrinkage variance estimates should improve if information contained in
the sample mean is known or estimated. In line, Wang recently proposed to use a constant coefficient of variation model
and a quadratic variance–mean model for variance estimation as a function of an unknown mean (Wang et al., 2009).

Second, a model that has a variable-specific variance estimator will lack power due to the aforementioned lack-of-
degrees-of-freedom issue in high-dimensional data. Using for instance a variable-by-variable z-score transformation such
as y∗

i,j =
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σ̂j
for j ∈ {1, . . . , p}, using regular sample mean and standard deviation estimates µ̂j and σ̂j of variable

j, will generate corresponding variable-specific mean and standard deviation estimates µ̂∗
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