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Abstract

The exact confidence interval for� is hypersensitive to minor violations of the normality assumption
and its performance does not improve with increasing sample size.An approximate confidence interval
for � is proposed and is shown to be nearly exact under normality with excellent small-sample
properties under moderate nonnormality. The small-sample performance of the proposed interval
may be further improved using prior kurtosis information. A sample size planning formula is given.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let Y1, Y2, . . . , Yn be a random sample. IfYi ∼ N
(
�,�2

)
for all i, then an exact

100(1 − �)% confidence interval for�2 is

(n − 1)�̂2
/U <�2 < (n − 1)�̂2

/L, (1)

whereU = �2
�/2;n−1, L = �2

1−�/2;n−1, �̂2 = ∑ (
Yi − �̂

)2
/(n − 1), �̂ = ∑

Yi/n, �2
p,df is

the point on a central chi-squares distribution with df degrees of freedom exceeded with
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probabilityp (Tate and Klett, 1959). Taking the square root of the endpoints of (1) gives a
confidence interval for�.

The exact confidence interval (1) is hypersensitive to minor violations of the normality
assumption. The results ofScheffé (1959, p. 336)can be applied to show that (1) has
an asymptotic coverage probability of about 0.76, 0.63, 0.60, and 0.51 for the Logistic,
t (7), Laplace, andt (5) distributions, respectively. This result is disturbing because these
symmetric distributions are not easily distinguished from a normal distribution unless the
sample size is large.Miller (1986, p. 264)describes this situation as “catastrophic”.

An alternative to the exact confidence interval is proposed here that: (1) is nearly exact
under normality, (2) has coverage probability close to 1−� under moderately nonnormality,
(3) has coverage probability that approaches 1−� as the sample size increases for nonnormal
distributions with finite fourth moments, and (4) is not computationally intensive.

2. Proposed confidence interval

Instead of assumingYi ∼ N
(
�,�2

)
, let Yi (i = 1, 2, . . . , n) be continuous, independent

and identically distributed random variables with 0< var (Yi) = �2, E (Yi) = � and finite
fourth moment. The variance of̂�2 may be expressed as�4

{
�4 − (n − 3)/(n − 1)

}
/n,

where�4 = �4/�4 and�4 is the population fourth central moment(Mood et al., 1974,

p. 229). A variance-stabilizing transformation for̂�2 is ln
(
�̂2

)
and application of the

delta method givesvar ln
(
�̂2

)
�

{
�4 − (n − 3)/(n − 1)

}
/n.Shoemaker, 2003found that

using
{
�4 − (n − 3)/n)

}
/(n − 1) improved the small-sample performance of his equal-

variance test, and this small-sample adjustment will be used here. In practice,�4 is unknown

and an estimate ofvar ln
(
�̂2

)
will require an estimate of�4. Pearson’s estimator̂�4 =

n
∑ (

Yi − �̂
)4

/
(∑ (

Yi − �̂
)2

)2
tends to have large negative bias in leptokurtic (heavy

tailed) distributions unless the sample size is very large. The following estimator of�4,
which is asymptotically equivalent to Pearson’s estimator, is proposed

�̄4 = n
∑

(Yi − m)4
/ (∑ (

Yi − �̂
)2

)2
, (2)

wherem is a trimmed mean with trim-proportion equal to 1/
{
2(n − 4)1/2} so thatm

converges to� asn increases without bound. This estimator of kurtosis tends to have less
negative bias and smaller coefficient of variability than Pearson’s estimator in symmetric
and skewed leptokurtic distributions.

In some applications a large-sample estimate of�4 from a previous study will be available.
Let �̃4 denote a prior point estimate of�4 obtained from a sample of sizen0. The prior point
estimate may be combined with (2) to give a pooled estimate of�4

�̂∗
4 = (

n0�̃4 + n�̄4
)
/(n0 + n), (3)

which obviously simplifies to (2) when prior information is unavailable.
A prior point estimate of�4 need not come from a single large sample but instead could

be a pooled estimate from several small samples. When pooling kurtosis estimates from
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