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a b s t r a c t

The conventional Statistical Process Control (SPC) techniques have been focused mostly
on the detection of step changes in process means. However, there are often settings for
monitoring linear drifts in process means, e.g., the gradual change due to tool wear or
similar causes. The adaptive exponentiallyweightedmoving average (AEWMA) procedures
proposed by Yashchin (1995) have received a great deal of attention mainly for estimating
andmonitoring stepmean shifts. This paper analyzes the performance of AEWMA schemes
in signaling linear drifts. A numerical procedure based on the integral equation approach
is presented for computing the average run length (ARL) of AEWMA charts under linear
drifts in themean. The comparison results favor the AEWMAchart under linear drifts. Some
guidelines for designing AEWMA charts for detecting linear drifts are presented.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Control charts are effective tools in statistical process control (SPC) for processmonitoring and quality improvement. The
applications of control charts extend far beyond industrial setting toward other areas such as biology, genetics,medicine, and
finance (Montgomery, 2009). One of themost important problems in quality engineering is the detection of shifts in process
means which occur in different ways. The shift may be a step change in the mean or a drift in the mean in a linear/nonlinear
fashion. The step shift stays at the new level since its occurrence while the linear drift gradually increases/decreases over
time in the mean. A great deal of attention has been devoted to the monitoring of step mean shifts while relatively less
attention has been paid to the monitoring of linear drifts in the mean.

The output characteristics of many manufacturing processes exhibit drifts, and the drift in the mean can be positive or
negative, linear or nonlinear. A typical example of positive drifts is tool wear, which describes the gradual failure of cutting
tools due to regular operation. A tool wear-out leads to gradually increasing product dimension. An example of negative
drifts includes a continuous clogging of a spray nozzle. In both examples, the output characteristics exhibit a drift instead
of a step change in the process mean. As the drift in the process mean can cause significant losses in product quality, it is
important to detect the drift as soon as it occurs. In practice, the linear model often serves as a good one for many drifts. For
simplicity, this paper will limit discussions on the detection of linear drifts.

The conventional control charts for monitoring step shifts, including the Shewhart, cumulative sum (CUSUM), and
exponentially weighted moving average (EWMA) control charts, have also been extended for monitoring linear drifts. For
example, Davis and Woodall (1988) considered the Shewhart chart supplemented with run rules under a linear drift. Davis
and Krehbiel (2002) investigated the performance of Shewhart and zone charts under linear trends. Rainer et al. (2001)
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suggested Shewhart-type UMP charts derived from the uniformly most powerful (UMP) test for monitoring linear drifts.
Based on a modification of the Markov chain method developed by Brook and Evans (1972) and Bissell (1984) proposed
methods for computing average run length (ARL) of CUSUM charts under linear drifts in the process mean. However, this
procedure did not produce accurate ARL values. Gan (1992, 1996) further presented an accurate numerical method based
on an integral equation for computing the ARL of CUSUM charts under linear trends. Koning and Does (2000)developed a
CUSUM-type chart from the UMP test for the detection of linear trend. In addition to the use of Shewhart and CUSUM charts,
Gan (1991) and Reynolds and Stoumbos (2001) considered the EWMA chart for detecting linear drifts. Other monitoring
schemes for detecting linear drifts are given by Domangue and Patch (1991), Runger and Testik (2003), Fahmy and Elsayed
(2006a,b) and Tseng et al. (2007).

Recently, Zou et al. (2009)made a comprehensive comparison among various control charts under linear drifts, including
CUSUM, EWMA, generalized EWMA (GEWMA) and generalized likelihood ratio test (GLRT). They showed that the GLRT
method can provide the best average performance at both small and large drifts in the process mean, and that the EWMA
chart outperforms the CUSUM chart under linear drifts. Compared to the EWMA method, the GLRT method has slightly
worse performance for detecting small linear drifts but much better performance for detecting large drifts. However, the
GLRT procedure does not have recursive form and suffers from the computation load issue.

The literature on the efficiency and robustness of the EWMA chart for monitoring step mean shifts indicates that it is
efficient in detecting small shifts in the processmean but not efficient for largemean shifts, as compared to the conventional
Shewhart control charts. Yashchin (1995) investigated the estimation efficiency of the EWMA scheme in terms of an inertia
function. He showed that the inertia increases as the magnitude of the mean shift increases. Therefore, the EWMA statistic
with a small smoothing constant is not efficient in estimating abrupt mean changes of moderate and large magnitudes. This
phenomenon has been referred to as the ‘‘inertia problem’’ (Woodall andMahmoud, 2005). The inertia phenomenon occurs
when the value of the EWMA statistic is on the lower side of the control limits but the shift occurs toward the opposite
direction. In this case, if the smoothing constant is small, it takes a longer time for the EWMA statistic to exceed the control
limits.

The inertia problemof the EWMA chart can be counteracted in part by using the combined Shewhart–EWMA chart (Lucas
and Saccucci, 1990). However, the Shewhart–EWMA chart is not a smooth combination of the Shewhart principle and the
EWMA scheme. To better overcome this problem, Yashchin (1995) proposed a smooth combination based on the adaptive
EWMA (AEWMA) scheme. The underlying idea of the AEWMA procedure is to allocate the weight on past observations at
each time step according to the magnitude of the estimation error. Unlike the conventional EWMA method, the smoothing
constant used in the AEWMA scheme is no longer constant but varies over time. This weighting scheme has been widely
discussed in the SPC literature recently. See, for example, Capizzi and Masarotto (2003), Shu (2008), Shu et al. (2008),
Mahmoud and Zahran (2010) and Tseng et al. (2010).

Similarly, the EWMA chart for monitoring linear drifts also suffers from the inertia problem when the drift coefficient in
the mean is large. In this article we extend the AEWMA scheme for monitoring linear drifts in the process mean. Markov
chain, integral equation, and Monte Carlo simulations have been widely used to evaluate performance of a control chart.
Similar to the approach of Gan (1991), an integral equation approach was developed to evaluate the performance of the
AEWMA chart under linear drifts. This numerical approach allows for a quick analysis of the chart performance without
running a large number of simulations. The AEWMA statistic can be expressed in an iterative way and thus can be viewed
simpler in format than the GLRT procedure.

The rest of the paper is organized as follows. In Section 2, the AEWMA chart for monitoring linear drifts is introduced.
In Section 3, the integral equation procedure for approximating the ARL of the AEWMA chart is developed. In Section 4,
the approximation accuracy of the integral equation approach is evaluated. In Section 5, the performance of the AEWMA
chart is compared with various control charts. In Section 6, a sequential design procedure is proposed to facilitate the
implementation of AEWMA charts. Finally, some concluding remarks are given.

2. The AEWMA chart under linear drifts

Let X1, X2, . . . , be a sequence of observations collected at fixed intervals of time. When the process is in the state of
statistical control, observations are assumed to be independently distributed from a normal distributionwith a knownmean
µ0 and known variance σ 2

0 . After an unknown time point τ , the process mean is subject to a linear drift while the variance
remains unchanged. The amount of drift is θσ0 per unit time, where θ is unknown. In other words, the process mean at time
t can be represented as

E(Xi) =


µ0, i ≤ τ
µ0 + θσ0(i − τ), i > τ.

Without loss of generality, we will assume the in-control process mean to be zero and the standard deviation to be one, i.e.,
µ0 = 0 and σ 2

0 = 1. Furthermore, we assume τ = 0 to simplify the discussion. These assumptions are consistent with
those made in Gan (1991). The ARL obtained assuming τ = 0 has been referred to as the zero-state ARL while the ARL
computed based on τ > 0 has been called the steady-state ARL. Within our investigations, both the zero-state and steady-
state results would provide qualitatively the same conclusion. For the sake of simplicity, we only consider the zero-state
ARL performance in this paper while the steady-state ARL performance can be similarly analyzed.
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