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a b s t r a c t

In this article, we propose the use of orthogonal series to estimate the inverse mean
space. Compared to the original slicing scheme, it significantly improves the estimation
accuracy without losing computation efficiency, especially for the heteroscedastic models.
Compared to the local smoothing approach, it is more computationally efficient. The
new approach also has the advantage of robustness in selecting the tuning parameter.
Permutation test is used to determine the structural dimension. Moreover, a variable
selection procedure is incorporated into this new approach, which is particularly useful
when the model is sparse. The efficacy of the proposed method is demonstrated through
simulations and a real data analysis.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Sufficient dimension reduction (Li, 1991; Cook, 1998) has recently received much attention as an efficient tool to tackle
the challenging problem of high dimensional data analysis. In full generality, the goal of regression is to elicit information
on the conditional distribution of a univariate response Y given a p-dimensional predictor vector X. Sufficient dimension
reduction is to find a k-dimensional projection subspace S = Span{B = (β1, β2, . . . , βk)} with k ≤ p such that

YyX|PSX, (1)

where β ’s are unknown p × 1 vectors, y indicates independence and P stands for a projection operator in the standard
inner product. The subspace S is then called a dimension reduction subspace for Y |X. When the intersection of all subspaces
satisfying (1) also satisfies (1), it is called the central subspace (CS) and is denoted by SY |X. Its dimension dY |X = dim(SY |X)
is defined as the structural dimension of the regression. Under some mild conditions, the CS exists (Cook, 1998; Yin et al.,
2008). The CS, which represents the minimal subspace preserving the original information of Y |X, is unique and the main

focus of dimension reduction. Let Z = Σ
−

1
2

X (X − E(X)), where ΣX is the covariance matrix of X, assumed to be positive

definite. Then Σ
−

1
2

X SY |Z = SY |X. Hence, without loss of generality, we may work at either Z- or X-scale.
Sliced inverse regression (Li, 1991, SIR) is the first and most well-known method for sufficient dimension reduction. It

investigates the trajectory of the inverse mean curve E(Z|Y ). Under the so-called linearity condition that E(Z|BTZ) is linear
in BTZ, SE(Z|Y ) ⊆ SY |Z. Since then, many related studies have been carried out in both theory and applications. Hsing and
Carroll (1992) established the asymptotic properties of SIR estimates when each slice only contains 2 observations. Zhu
and Ng (1995) extended this idea to allow for a fixed number of observations per slice. Zhu and Fang (1996) bypassed the
slicing step and used kernel smoothing to estimate cov[E(Z|Y )]. Bura and Cook (2001a) suggested a parametric approach
called parametric inverse regression. Fung et al. (2002) developed a variant version of SIR, CANCOR, where B-spline basis
function replaced simple slicing. Xia et al. (2002) proposed an alternative derivation of SIR through the combination of local

∗ Corresponding author.
E-mail addresses: qwang3@vcu.edu (Q. Wang), xryin@stat.uga.edu (X. Yin).

0167-9473/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2010.10.022

http://dx.doi.org/10.1016/j.csda.2010.10.022
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:qwang3@vcu.edu
mailto:xryin@stat.uga.edu
http://dx.doi.org/10.1016/j.csda.2010.10.022


Q. Wang, X. Yin / Computational Statistics and Data Analysis 55 (2011) 1656–1664 1657

linear expansion and projection pursuit, known as inverse minimum average variance estimation (IMAVE). Bura (2003) also
used local linear smoother to estimate the inverse mean function. On the other hand, Schott (1994), Velilla (1998), Bura and
Cook (2001b) and Zhu et al. (2006) developed different methods to estimate the structural dimension dY |X, under different
scenarios. SIR is a powerful method due to its simplicity. However, it still has limitations. One of the issues is estimation
efficiency. The finite-sample performance of SIR is not very satisfactory when the dimension is more than 2 and can be poor
for heteroscedastic models.

A new direction for sufficient dimension reduction that deserves serious consideration is functional data analysis. See
Ferraty and Vieu (2006) for an extensive review on functional data. Due to infinite dimensional in functional data, one
technical difficulty is in inverting the ill-conditioned covariance matrix. To overcome this issue, Ferré and Yao (2003, 2005)
replaced the matrix by a sequence of finite rank operators, with bounded inverse and converging to the covariance matrix,
and used an equivalent eigen-space combiningwith a generalized inverse to avoid the inversion of the functional covariance
matrix, respectively. Ait-Saidi et al. (2008) investigated dimension reduction methods assuming a single index functional
model. Amato et al. (2006) extended SIR and others to functional data through appropriate wavelet decompositions.
Recently, a platform from finite to infinite dimensional settings for inverse regression dimension reduction problem is
provided by Hsing and Ren (2009) using an RKHS formulation.

In this article, we propose the use of orthogonal series to estimate the inverse mean function. As a useful nonparametric
method, orthogonal series estimation is computationally efficient and can improve the estimation accuracy of SIR
significantly, especially for the heteroscedastic models. Adopting the covariance matrix estimation techniques proposed
by Ferré and Yao (2003, 2005), our method could be applied to functional data as well. The rest of the article is organized
as follows. Section 2 gives a brief review of the estimation of SIR. The new approach based on orthogonal series estimation
is detailed in Section 3. Section 4 introduces a Lasso type procedure to select informative variables. Section 5 discusses the
permutation procedure used to choose the structural dimension. Simulation studies and a real data example are in Section 6.
Section 7 concludes our discussion.

2. A brief review

Let {(XT
i , Yi), i = 1, . . . , n} be a random sample from (XT , Y ), where X = (X1, . . . , Xp)

T
∈ Rp and Y ∈ R, and assume

that dY |X is known. The SIR algorithm proposed by Li (1991) can be summarized as follows:

1. Standardize Xi:Zi = 6̂
−1/2
X (Xi − X̄), where X̄ and Σ̂X are the sample mean and sample covariance matrix respectively.

Then divide Yi for i = 1, . . . , n into H slices and let p̂h be the proportion of Yi that falls in slice h ∈ {1, 2, . . . ,H};
2. Within each slice h, compute the sample mean of Z and denote by Z̄h. Form a sample SIR matrix V̂ =

∑H
h=1 p̂hZ̄hZ̄T

h , and
find the eigen-structure of V̂ ;

3. The dY |X eigenvectors (η̂i, i = 1, . . . , dY |X) corresponding to the dY |X largest eigenvalues are the estimated directions of

SE(Z|Y ). Back to the X scale, β̂i = Σ
−

1
2

X η̂i, i = 1, . . . , dY |X.
In this article, we use orthogonal series, a more flexible nonparametric tool, to estimate the inverse mean function. Our

approach can be regarded as an alternative to the Principal Fitted Component model, proposed by Cook (2007) and Cook and
Forzani (2008). In particular, one model they proposed is

Xy = E(X) + Γ αfy + σϵ,

where Xy denotes a random vector distributed as X|Y = y, Γ ∈ Rp×d, d < p, Γ TΓ = Id, α ∈ Rd×r and d ≤ r . fy ∈ Rr is a
known vector-valued function of responsewith

∑
y fy = 0, σ > 0 and the error vector ϵ ∈ Rp. Inverse regression plots ofXy

versus y can be used to find suitable choices of fy, then the sufficient dimension reduction subspace S(Γ ) is estimated from
themaximum likelihood. The authors alsomentioned other possibilities for basis functions to be used for fy. Rather than just
estimating fy, we use orthogonal series to estimate the inverse mean function without any particular model assumption.

3. Alternative estimation for SIR

3.1. Orthogonal series estimation

Suppose that a regression function of y given t can be represented as y = µ(t) + ϵ, where µ(t) is the mean function
and ϵ is the random error. If it is reasonable to assume that µ(t) is a smooth function, many classes of functions can then be
used to approximate µ(t). In general,

y =

∞−
j=0

θjϕj(t) + ϵ, (2)

where {ϕj} is a basis function and θj’s are the unknown Fourier coefficients. Once a basis function is chosen, the estimation of
µ(t) is equivalent to the estimation of those Fourier coefficients. In practice, not all of them are estimable since only a finite
number of observations are available. The approximation µ̂(t) =

∑J
j=0 θ̂jϕj(t) is often used and known as a series estimator.

More details on the properties of series estimator and the choice of smoothing parameter J can be found in Härdle (1990)
and Eubank (1999).
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