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a b s t r a c t

A model is introduced for measurements obtained in collaborative interlaboratory
studies, comprising measurement errors and random laboratory effects that have Laplace
distributions, possibly with heterogeneous, laboratory-specific variances. Estimators are
suggested for the common median and for its standard deviation. We provide predictors
of the laboratory effects, and of their pairwise differences, along with the standard
errors of these predictors. Explicit formulas are given for all estimators, whose sampling
performance is assessed in a Monte Carlo simulation study.

Published by Elsevier B.V.

1. Interlaboratory studies and key comparisons

The international agreement, the so-called ‘‘Mutual Recognition Arrangement’’ (MRA) (CIPM, 1999) on mutual recogni-
tion of national measurement standards, calibration and measurement certificates issued by national metrology institutes
(NMIs) calls for the execution of interlaboratory studies aimed at testing principal techniques and measurement methods
in a particular field of science. These studies are organized by the Consultative Committees (CCs) of the Comité International
des Poids et Mesures (CIPM), there are CCs for length, mass, amount of substance, etc. Such interlaboratory studies are called
Key Comparisons (KCs), and one of their principal goals is to establish the degree of equivalence of national measurement
standards which characterize the extent to which each institute may have confidence in the results reported by other NMIs.
Typically, a KC produces a key comparison reference value (KCRV): for example, in a KC focusing on the length of a gauge
block, this should be the block’s true length (ISO/IEC, 2007, 5.18) although in actuality it is the best estimate of this length. In
a KC focusing on themass fraction of a particular substance in a certified referencematerial of which aliquots are distributed
to the participating NMIs for analysis, this could be the mass fraction of one or more selected compounds.

The MRA defines the Degree of Equivalence of a national measurement standard (unilateral DoE) as comprising its
deviation from the key comparison reference value and the uncertainty of this deviation. According to theMRA the degree of
equivalence between a pair of nationalmeasurement standards (bilateral DoE) is formed by the difference of their deviations
from the reference value and the uncertainty of this difference. If a reference value cannot be meaningfully defined (for
example, when the KC involves multiple circulating artifacts and not all NMIs measure all of them), the KC results might be
expressed directly in terms of the degrees of equivalence between pairs of standards.
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The International vocabulary of metrology (VIM) (ISO/IEC, 2007, 2.26) definesmeasurement uncertainty as a ‘‘non-negative
parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information
used’’, and adds that this ‘‘parameter may be, for example, a standard deviation’’. For this reason we follow the customary
usage in statistics and use either ‘‘standard deviation’’ or ‘‘standard error’’ throughout, where metrologists might use
‘‘measurement uncertainty’’ instead.

The ith of n NMI participating in a KC is supposed to produce a measured value xi and an assessment of its standard error
ui. Thus we start with a set of n (scalar) measurement values x1, . . . , xn, and the corresponding standard errors u1, . . . , un,
whichwe assumeare known. Theprecisemeaning of these uncertainties often is debatedheatedly. Could they be regarded as
known quantities, or instead are they merely estimates of unknown quantities? Somemetrologists insist that uncertainties
are computed (with assuredness and certainty of arithmetic), while others concede that they are only estimated. When xi
and ui are modeled as in Bayesian inference, one can convincingly argue that conditionally upon the data, ui indeed are
computed as standard deviations of suitable posterior distributions, and therefore are known with certainty which is our
assumption.

The next section introduces the model. We find estimators of the KCRV (8) and of its standard error (10), as well as of a
scale parameter (9) in the distribution of the random interlaboratory effects. Assuming these parameters to be known, in
Section 3 the estimators of the degrees of equivalence (value and standard error) are derived. Section 4 contains results of
Monte Carlo simulation. Most of the formulas needed in Section 3 are collected in the Appendix.

2. Random effects and commonmedian model

2.1. Mixed effects Laplace model

In many practical cases, all confidence intervals based on measured values xi and their standard errors ui do not overlap,
which suggests that the dispersion of the measured values xi is greater than what their standard errors might lead one to
expect. It is also fairly common that a few of the measurements deviate markedly from the bulk of the rest.

The first kind of situation can be dealtwith bymodeling themeasurements as outcomes of independent randomvariables
Xi = µ + Bi + Ei for i = 1, . . . , n, where µ is the unknown KCRV, Bi is a lab-specific random effect, and Ei represents
measurement error. Similarly to a common practice in robust estimation (Wilcox, 2005) the second eventuality can be
addressed by modeling the distributions of Bi and Ei as suitably heavy-tailed. The results are then analyzed using either ad
hoc robust statistical methods, or likelihood methods, conventional or Bayesian, that guarantee similar robustness within a
parametric framework.

There is a precedent to this general approach. For example, Pinheiro et al. (2001) describe a model that is based on
Student’s t-distribution. In the same spirit, the median has been suggested as a possible consensus KCRV estimator e.g.,
Cox (2002). However, this method does not use the standard errors ui at all; neither do other robust estimators that have
been suggested to address the same problem, e.g., Analytical Methods Committee (1989a,b) and Thompson et al. (2006).
The departures from the Gaussian random effects linear model, that appear most detrimental to the performance of the
estimators, while staying within the realm of symmetric distributions, are heaviness of the tails of the distribution of Bi, and
incomplete knowledge of the variances of the measurement errors Ei.

To account for these facts we suggest a mixed effects model in which both Bi and Ei have suitably scaled Laplace (double-
exponential) distributions. This model, as we shall show, is far more robust than the traditional Gaussian model, while
incurring only moderate loss of efficiency in this traditional case. Similarly to what other laboratory effects do, it also
overcomes the problemof ‘‘inconsistency’’ (between the xi). See Toman and Possolo (2009) for critique of consistency testing
proposed by Decker et al. (2006) and Cox (2007). In ourmodel both lab-specific random effects andwithin-labmeasurement
errors can be interpreted as Gaussian but with variances u2

i that are like random draws from exponential distributions.
Our estimation method for µ on the basis of heterogeneous data is based on the statistic,

µ = argmin
µ

n−
i=1

|xi − µ|

ui
, (1)

which is a weighted median. This procedure has a maximum likelihood interpretation to be discussed in the next section,
and there are efficient numerical algorithms for its evaluation; see Bloomfield and Steiger (1983). Indeed, medians weighed
by their standard errors have already been suggested as KCRV estimators; see Müller (2000), Ratel (2006). Besides those
mentioned above, Rocke (1983), Davies (1991), Lischer (1996) and Duewer (2006, 2008) advocate the use of robust statistics
(including the median) in interlaboratory studies. The same robustness issues arise in the more general context of meta-
analysis; see Hedges and Olkin (1985). To address meta-analysis problems robustly, Demidenko (2004) uses a setting which
is somewhat similar to the following model by assuming Gaussian errors and Laplace between-lab effects. Wilcox (2006)
points out difficulties with homogeneity testing for the medians.

The model we propose for KCRV estimation, and for the assessment of its standard error is this: the measured values,
x1, . . . , xn, are outcomes of random variables

Xi = µ + Bi + Ei, (2)
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