
Computational Statistics and Data Analysis 55 (2011) 973–982

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Stepwise local influence analysis
Lei Shi a,∗, Mei Huang b,c

a Statistics and Mathematics School, Yunnan University of Finance and Economics, Kunming, 650221, PR China
b Mathematics and Statistics School, Yunnan University, Kunming, 650091, PR China
c Management School, Yunnan University of Nationalities, Kunming, 650031, PR China

a r t i c l e i n f o

Article history:
Received 29 July 2009
Received in revised form 7 June 2010
Accepted 2 August 2010
Available online 13 August 2010

Keywords:
Local influence analysis
Influential observations
Subset perturbation scheme
Masking effects

a b s t r a c t

A new method called stepwise local influence analysis is proposed to detect influential
observations and to identify masking effects in a dataset. Influential observations are
detected step-by-step such that any highly influential observations identified in a previous
step are removed from the perturbation in the next step. The process iterates until no
further influential observations can be found. It is shown that this new method is very
effective to identify the influential observations and has the power to uncover themasking
effects. Additionally, the issues of constraints on perturbation vectors and bench-mark
determination are discussed. Several examples with regression models and linear mixed
models are illustrated for the proposed methodology.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Local influence analysis introduced byCook (1986) employs a simultaneous perturbation schemeandmaximizes the local
change of the normal curvature of an influence graph that is based on likelihood displacement to find a local diagnostic. This
method is flexible since one can perturb different parts ofmodels and study the local changes caused by these perturbations.
Since then, many applications and extensions of this method have been studied (e.g. Beckman et al., 1987; Lawrance, 1988;
Thomas and Cook, 1990;Wu and Luo, 1993; St. Laurent and Cook, 1993; Shi, 1997; Poon and Poon, 1999; Zhu and Lee, 2001;
Zhu et al., 2007).

The identification of masking effects is an important issue and has been extensively discussed in the field of influence
analysis (Cook and Weisberg, 1982; Atkinson, 1985; Rousseeuw and Leory, 1987; Chatterjee and Hadi, 1988). Lawrance
(1995) provided a detailed classification formasking effects. The current approaches for dealingwith the problemofmasking
effects include the use of multiple case deletions (Chatterjee and Hadi, 1988; Lawrance, 1995) or the use of robust detection
(Atkinson, 1985, 1986; Rousseeuw and Leory, 1987). Bruce and Martin (1989) suggested an iterative leave-k-out diagnostic
procedure to deal with the masking and smearing effects in time series data. Obviously deletion diagnostics need extensive
computations.

Local influence analysis employs a simultaneous perturbation scheme and has an advantage in that it can detect joint
influence of observations and thus can identify some masking effects (Lawrance, 1988). However, when there exist strong
masking effects in the data, such as those caused by a group of outliers or influential observations, the local influence analysis
will fail to identify such influential patterns, as noted byBruce andMartin (1989, p. 420) in time seriesmodels and our studies
in this paper. For this reason, some authors have used the first two eigenvectors of the key matrix in local diagnostics to
extractmore information about influential observations (Lu et al., 1997; Shi, 1997; Shi andOjeda, 2004), or they have defined
an aggregate measure that includes several influential eigenvectors (Poon and Poon, 1999; Zhu and Lee, 2001) to detect
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the influential observations. However these approaches suffer from the problem about how many eigenvectors should be
inspected or included. In addition, when several eigenvectors are used to detect influential observations, it is difficult to
compare the magnitudes of the influential observations identified from different eigenvectors.

In local influence analysis, although the observations are jointly detected, when one observation is highly influential, the
associated local diagnostic for this point will have a high value, which will mask the effects of other influential observations
if there is a mutual influence among influential observations. We propose here to uncover masking effects more generally
by removing the effects of any highly influential observations identified by perturbing all observations in the first time
step, and then performing a local influence analysis that is based on a subset perturbation scheme in which the influential
observations identified in the first step are excluded. In this way, the influential observations masked by the first step can
be identified in this new step. The procedure continues iteratively until no further influential observations can be found. In
this paper we use this idea to suggest a new local influencemethod, which we call stepwise local influence analysis. We also
discuss the issues of constraints on the perturbation vector and bench-mark determinations on local influence analysis. The
analysis of three examples shows that this technique is very effective for identifying outliers or influential observations and
uncovering masking effects.

The rest of the paper is organized as follows. Section 2 presents the local influence analysis method and discusses the
constraints of the perturbation vector and the bench-mark determination problemof the local diagnostic. Section 3 proposes
the stepwise local influencemethod. Section 4 examines the proposed technique using two examples in a regressionmodel.
Section 5 illustrates the method using an example in a linear mixed model. Section 6 gives some concluding remarks and
discussions.

2. Local influence analysis and some notes

2.1. Local influence analysis

Let y = (y1, . . . , yn)′ denote an n × 1 vector of observations with probability density function p(y|θ), where θ is an
r × 1 unknown parameter vector. The log-likelihood function of the postulated models is denoted by ℓ(θ). A perturbation
scheme is introduced through a vector ω ∈ Ω ∈ Rm, where m is the dimension of ω and a commonly used case is m = n.
Let ℓ(θ |ω) denote the perturbed log-likelihood function, and assume there is a ω0 such that ℓ(θ |ω0) = ℓ(θ). Following the
Cook’ methodology the likelihood displacement is defined as LD(ω) = 2[ℓ(θ̂) − ℓ(θ̂ω)], where θ̂ and θ̂ω are, respectively,
the MLE of θ in postulated model (ω = ω0) and perturbed model. Let ω = ω0 + ϵh, where ϵ is a small scalar and h is an
unit-length vector in Rm. Cook (1986) used the normal curvature Ch of the influence graph α(ω) = (ω′, LD(ω))′ to measure
the local change caused by the perturbation, which has the following form

Ch = 2h′∆′(−L̈)−1∆h (2.1)

where L̈ = ∂2ℓ(θ)/∂θ∂θ ′ and ∆ = ∂2ℓ(θ |ω)/∂θ∂ω′ evaluated at ω = ω0 and θ = θ̂ . The main diagnostic of local influence
is obtained by maximizing Ch with respect to h under the condition that h′h = 1. It is known this maximum direction,
denoted by hmax, is the eigenvector associated with the largest absolute eigenvalue of matrix ∆′(−L̈)−1∆. hmax is the main
diagnostic in local influence analysis, and the maximum curvature Cmax = Chmax can be used to check the magnitude of
influence in this direction.

Poon and Poon (1999) noted that Ch is not invariant under the scale change of perturbation vector, and suggested the
conformal normal curvature. At the critical point ω0, the local diagnostic can be found by maximizing

Ch = h′Ah, A =
∆′(−L̈)−1∆

tr(∆′(−L̈)−1∆)2
(2.2)

with respect to hwith h′h = 1. Let (λi, αi), i = 1, . . . , n, denote the eigen-pair of matrix A, where λ1 ≥ λ2 ≥ · · · ≥ λn, and∑
i λ

2
i = 1. Then hmax = α1, which has nothing changed with that based on Cook’s normal curvature, however Cmax = λ1

in this case has a range that varies from 0 to 1, which is convenient for measuring the magnitude of influence in direction
hmax. It is noted that some authors have also used the first two eigenvectors to study the influential patterns (Lu et al., 1997;
Shi, 1997; Shi and Ojeda, 2004).

2.2. Constraint on the perturbation vector

Critchley and Marriott (2004) noted that it is sensible to have a perturbation vector ω with some constraints. In case
weights of likelihood function, the perturbed likelihood can be written as (Lu et al., 1997)

ℓ(θ |ω) =

−
i

ωiℓ(θ |yi) = nEFn(ω)l(θ |y),
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