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a b s t r a c t

The growth curve model (GCM), also known as GMANOVA, is a useful technique for
investigating patterns of change in repeated measurement data over time and examining
the effects of predictor variables on temporal trajectories. The reduced rank feature
had been introduced previously to GCM for capturing redundant information in the
criterion variables in a parsimonious way. In this paper, a ridge type of regularization was
incorporated to obtain better estimates of parameters. Separate ridge parameters were
allowed in column and row regressions, and the generalized singular value decomposition
(GSVD) was applied for rank reduction. It was shown that the regularized estimates
of parameters could be obtained in closed form for fixed values of ridge parameters.
Permutation tests were used to identify the best dimensionality in the solution, and the
K -fold cross validationmethod was used to choose optimal values of the ridge parameters.
A bootstrapmethodwas used to assess the reliability of parameter estimates. The proposed
modelwas further extended to amixture of GMANOVAandMANOVA. Illustrative examples
were given to demonstrate the usefulness of the proposed method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The growth curve model (GCM; Potthof and Roy, 1964), also known as generalized MANOVA (or GMANOVA for short),
is a useful technique for investigating patterns of change in repeated measurements of a response variable or variables
over time and examining the effects of predictor variables on temporal trajectories. This type of model is often used in
the analysis of longitudinal or repeated measurement data, often arising in psycho-physiological, biological and medical
research. Recently, the reduced rank feature was introduced to GCM (Reinsel and Velu, 1998, 2003) to capture redundant
information in the criterion variables in a parsimonious way. This additional feature allows the extraction of components
of predictor variables that are most predictive of criterion variables. A series of components called redundancy components
are mutually orthogonal and successively account for the maximum variance in the criterion variables.

In experimental studies conducted in biomedicine and psychology, we frequently encounter data with small sample
sizes, which tend to produce estimates of parameterswith large standard errors. The small sample size problem casts serious
doubts about the adequacy of conventional estimation methods, such as the maximum likelihood estimation method, that
largely rely on an asymptotic rationale. To remedy this situation, we incorporate a ridge type of regularization in estimating
parameters in the reduced rank GCM. This method shrinks estimates of parameters toward zero, thereby reducing the
variance of the estimates a great deal, while introducing a small bias. The net result is that estimates of parameters closer
to true population values may be obtained. A ridge type of regularization method is particularly attractive when the sample
size is small and/or predictor variables are nearly collinear (Hoerl and Kennard, 1970). This has been demonstrated recently
in a variety of contexts in multivariate analysis (Hwang, 2009; Takane and Hwang, 2007; Takane et al., 2008; Takane and
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Jung, 2008, 2009). In this paper, we extend the basic methodology of ridge regularization to the reduced rank GCM and
illustrate its use. We also consider an analogous extension of a mixture of the GMANOVA and MANOVA models (Chinchilli
and Elswick, 1985) with the GMANOVA part subject to similar rank reduction, and the MANOVA part capturing the effects
of extraneous variables.

This paper is organized as follows.We first present themodel and the parameter estimation procedure for the regularized
reduced rank GCM (Section 2.1). We then extend the model and the estimation procedure to a mixture of the GMANOVA
andMANOVAmodels (Section 2.2). This is followed by expositions of permutation tests for selecting the best dimensionality
in the solution, the K -fold cross validation method for choosing optimal values of ridge parameters, and the bootstrap
method for assessing the reliability of parameter estimates (Section 2.3). Illustrative examples are given to demonstrate
the usefulness of the proposedmethod in simulated and real data analysis situations (Section 3). The final section concludes
the paper (Section 4).

2. The methods

2.1. The reduced rank GCM and the regularized parameter estimation

Let Y denote an n by p matrix of criterion variables. In the GCM setting, this matrix typically consists of multiple
measurements of a response variable at p time points from a group of n subjects or cases, although in more general settings,
it could be any multivariate data matrix. We assume that there is some additional information about the subjects and/or
about the variables in Y that may be used to predict parts of Y. Let X denote an n by q (q ≤ n) matrix of predictor variables
for subjects such as their group memberships (e.g., treatment groups) and other demographic information. Let H denote a
p by d (d ≤ p) matrix of predictor variables for time points (or variables) in Y that capture the relationships among the
columns of Y such as the coefficients of orthogonal polynomials over time. (The matrix X is often called a between-subjects
design matrix, and H a within-subjects design matrix.) Then, the GCMmay be written as

Y = XBH′
+ E, (1)

where B is a q by dmatrix of regression coefficients, and E is an n by pmatrix of disturbance terms. In the reduced rank GCM,
we assume that there is some redundancy in B, so that

rank(B) = r ≤ min(q, d) (2)

(Reinsel and Velu, 1998, 2003). A model of the above form has existed outside the realm of GCM, e.g., 2-way CANDELINC
(CANonical DEcomposition under LINnear Constraints Carroll et al., 1980), and as a special case of CPCA (Constrained
Principal Component Analysis; Takane and Shibayama, 1991; Takane and Hunter, 2001). Note that, if there is no obvious
H available, we set H = I, and the model reduces to a simple MANOVA or redundancy analysis model (Van denWollenberg,
1977; van der Leeden, 1990).

Parameters in the reduced rank GCM are usually estimated by the maximum likelihood (ML) method (Reinsel and Velu,
1998, 2003) or by the least squares (LS) method (Carroll et al., 1980; Takane and Shibayama, 1991; Takane and Hunter,
2001). We use the latter with the provision of its extension to regularized estimation in mind. The structure of derivations
for the regularized estimation is remarkably similar to that for the non-regularized case. In the ordinary LS estimation, we
minimize

φ(B) = SS(Y − XBH′) (3)

with respect to B subject to the rank restriction (2). To achieve this goal, we first rewrite φ(B) as (Takane and Shibayama,
1991; ten Berge, 1993):

φ(B) = SS(Y − XB̂H′) + SS(B̂ − B)X ′X,H ′H

= SS(Y) − SS(Y)PX , PH + SS(B̂ − B)X ′X,H ′H , (4)

where SS(A)M,N = tr(A′MAN), PX = X(X′X)−X′ and PH = H(H′H)−H′ are orthogonal projectors onto the column spaces of
X and H, respectively, and

B̂ = (X′X)−X′YH(H′H)−, (5)

is a rank free LS estimate of B. Here ‘‘−’’ indicates a generalized inverse (g-inverse). Note that while B̂ in (5) is not unique
if X or H is singular, the decomposition (4) is unique. To obtain a unique estimate of B̂, we can use the Moore–Penrose
inverse for (X′X)− and (H′H)−. Since the first and the second term on the right-hand side of (4) are unrelated to B, the
reduced rank estimate of B can be obtained by minimizing the third term. This can be done via the generalized singular
value decomposition (GSVD) of B̂with metric matrices X′X and H′H. This GSVD problem is written as

GSVD(B̂)X ′X,H ′H . (6)
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