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WHY SHOULD A PHYSICIAN CARE ABOUT FRACTALS?

‘‘Nothing in Nature is random. ... A thing appears random only

through the incompleteness of our knowledge.’’

Baruch Spinoza

Physicians may find themselves increasingly coming across the
terms ‘‘fractals’’, ‘‘nonlinear dynamics’’ and ‘‘complexity’’ in the
medical sciences literature. At the time of writing, a search on
‘‘fractals’’ alone on Pubmed yielded 2063 articles. This number is
expected to grow rapidly. There is a journal dedicated to the topic
of fractals in medicine and biology.

Behind this enthusiasm is the idea that living systems are not
the simple, single-compartment or linear processes we often
assume them to be, nor are they usually random in behaviour.
Thus, more complex methods are required to characterise them
and the output signals they generate. By studying them over a
narrow range of linear behaviour fitting our assumptions, or by
simply looking at averaged values of their output, we neglect
information such as the dynamic properties of the system, i.e. how
the system changes over time.

Fractal analyses constitute a subset of these complex
methods. In the next few sections, we provide an overview of
fractals, of techniques available to describe fractals in data, and
we propose some reasons why a physician might benefit from an
understanding of fractals and fractal analysis. A number of

excellent past reviews have been written about fractals or
complexity for a medical,1,2 physiological3 and even epidemio-
logical4 audience, including a glossary to clarify some of the
jargon present in the medical literature on this topic.5 Thus, this
review will attempt to include more recent findings, and where
possible will additionally focus on the respiratory system,
particularly in paediatrics.

FRACTALS ARE EVERYWHERE

‘‘Why is geometry often described as ‘cold’ and ‘dry?’ One reason

lies in its inability to describe the shape of a cloud, a mountain,

coastline, or a tree. Clouds are not spheres; mountains are not

cones, coastlines are not circles, and bark is not smooth, nor does

lightning travel in a straight line.’’
Benoit Mandelbrot6

What are fractals?

Examples of fractals abound in nature, from clouds, trees,
mountain ranges, snowflakes, to the branching pattern of rivers
(Figure 1). Mandelbrot was the first to account for the complexity
of the systems found in the body with the concept of fractals.6 He
defined a fractal as an object with self-similar organisation, i.e.
details of the structure at smaller scales have a similar form to the
whole (Figure 2). Furthermore, a fractal is not smooth and
homogenous in form, and when examined at greater levels of
magnification, progressively greater details of the structure are
observed (scaling), and there exists no characteristic scale with
which to describe the structure (scale-invariance). Self-similar
structures obey a nonlinear, power law relation, where some
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There is increasing interest in the study of fractals in medicine. In this review, we provide an overview of

fractals, of techniques available to describe fractals in physiological data, and we propose some reasons

why a physician might benefit from an understanding of fractals and fractal analysis, with an emphasis

on paediatric respiratory medicine where possible. Among these reasons are the ubiquity of fractal

organisation in nature and in the body, and how changes in this organisation over the lifespan provide

insight into development and senescence. Fractal properties have also been shown to be altered in

disease and even to predict the risk of worsening of disease. Finally, implications of a fractal organisation

include robustness to errors during development, ability to adapt to surroundings, and the restoration of

such organisation as targets for intervention and treatment.
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physical measure of the structure L(r) is related to the scale at
which it is measured r via a power or scaling exponent a:

LðrÞ ¼ A ra (1)

where A is a constant.

Fractals in time

The concept of fractals can be applied not only to structural
forms that lack a single characteristic length scale, but also to
signals that lack a single characteristic time scale. Here, the
relationship between the statistical properties of the fluctuations
in the signal and the time window of observation is scale-invariant
or follows a power law (Figure 2). One corollary of this behaviour is
that future values in the signal are dependent on the past, i.e. the
signal displays correlations over time, and the system producing
the signal can be said to exhibit memory. That the future behaviour
of the system is a consequence of past behaviour is described as
determinism. Fluctuations in weather patterns, pollutant levels,
ocean temperatures, and even the stock exchange may appear
random, but all have been found to exhibit statistical self-
similarity. Fractals in biology are not necessarily scale-invariant
over all scales, but rather exhibit self-similarity over a finite scale.

How can we quantify fractals?

We present here a few methods to quantify fractals in space and
time which are frequently encountered in the medical literature.
The list is by no means comprehensive, and the interested reader is
referred to other sources3,7 for additional techniques.

The fractal dimension describes the extent to which an object
fills the space available over different scales. Whereas the fractal
dimension of geometric objects would be an integer, for a fractal
object it is a non-integer or fractional value (hence the term
fractal). For example, a straight line has a fractal (and geometric)
dimension of 1, a curve has a dimension of 2, and a fractal ‘‘line’’
will have a fractal dimension between 1 and 2. Correspondingly, a
fractal surface will occupy a fractal dimension between 2 and 3.
The fractal dimension is in essence also a measure of ‘‘irregularity’’

– a highly irregular line filling up two-dimensional space would
have a higher dimension closer to 2, in contrast to a smoother line
which would have a lower dimension closer to 1. Calculation of the
fractal dimension can be conceptualised as using a ruler to
measure the contour length of a structure.3 As the length of the
ruler decreases and finer details of the structure are revealed,
the measured length of the structure increases. In a fractal object, the
measured length of the structure L(r) will be related to the length of
the ruler r via a power law of the form of Equation (1), and the fractal
dimension is the scaling exponent a. In practice, the power law
relationship is plotted in a log-log manner so that a linear graph is
obtained, and a is given by the slope of the line of best fit.

Most methods to quantify fractal signals in time are analogous
to the fractal dimension, but applied to the time rather than length
scale, and using some statistical measure of the signal fluctuations
about the mean instead of the measured length. In Hurst rescaled

range analysis,3,7 the statistical measure of interest is the local
range of the signal divided by the standard deviation over an
observation time window. This measure generally increases with
the length of the time window following a power law, with an
exponent denoted H ranging from 0 to 1. A higher H implies
increased correlations in time. Hurst analysis has conventionally

Figure 1. An example of a fractal structure – the pulmonary vascular tree in a

human infant (used with permission44).

Figure 2. Ilustration of a fractal structure over length scales (top panel) and a

statistically fractal signal over time scales (bottom panel). Details of the structure or

signal at smaller scales have a similar form to the whole, and when examined at

greater levels of magnification, progressively greater details of the structure or

signal are observed. With a fractal structure, a geometric quantity such as length or

area is measured, whereas with a fractal signal, some statistical quantity of interest

is measured (Adapted from Frey and Suki, 2009 with permission62).
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