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a b s t r a c t

An exact MCMC-based solution for the Kalman filter with Markov switching and GARCH
components is proposed. To motivate the solution, an international equity market model
incorporating common Markovian regimes and GARCH residuals in a persistent factor
environment is considered. Given the intractable and approximate nature of the model’s
likelihood function, a Metropolis-in-Gibbs sampler with Bayesian features is constructed
for estimation purposes. To accelerate the drawing procedure, approximations to the
conditional density of the common component are also considered. The model is applied
to equity data for 18 developed markets to derive global, European, and country-specific
equity market factors.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Exact and approximate MCMC-based solutions for the Kalman filter with Markov switching and GARCH components
are proposed in this paper. The solutions extend King et al. (1994) contribution in deriving an approximate Kalman filter
with GARCH volatilities, and effectively provide a first-time derivation of an exact Kalman filter in the presence ofMarkovian
regimes and GARCH innovations. More generally, the solutions are applicable for any deterministic recursive volatility form,
andmay be used to jointly capture the persistence and volatility properties or characterise latent paths prevalent in financial
or economic data.
The solutions are applied to estimate a unified factor model incorporating various facets of equity market return

persistence, as well as co-movement possibilities in the time- and discrete regime-dependent contexts. The theoretical
capacity for persistence and feedback in asset prices is discussed extensively in the behavioural finance literature (see, for
example, De Long et al. (1990a,b), Daniel et al. (1998, 2001) and Hong and Stein (1999)). In turn, the specification of discrete
regime-dependent volatility enables assessment of the effects of common shocks across the various volatility-regime
structures, while asset-specific idiosyncratic volatility provides the capacity for deriving time and volatility-dependent
measures of asset co-movement.
Although many papers have independently examined the behavioural and volatility components of equity returns (King

et al., 1994; De Santis and Gerard, 1997; Aguilar and West, 2000; Grundy and Martin, 2001; Jegadeesh and Titman, 2001),
the augmented Kalman filter setting is used in this paper to model the purported behavioural and volatility characteristics
of equity market data.
To facilitate the estimation and obtain the requisite factors, a dynamic common factor model is constructed and applied

to developed national equity market returns. In theory, the model may be exactly estimated using the Kalman filter with
Markovian regimes and GARCH innovations. An exact likelihood function for such a filter cannot, however, be constructed
(King et al., 1994; Kim and Nelson, 1998). Given the intractable and approximate nature of the adopted model’s likelihood
function, a Metropolis-in-Gibbs sampler is constructed to obtain exact Bayesian inferences for the dynamic factor model in
the presence of persistence in the common and idiosyncratic components and their respective volatility structures.
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The paper is structured as follows. Section 2 describes the model structure. The estimation procedure is detailed in
Section 3, while Section 4 considers approximations for accelerating the common factor drawing process. Section 5 applies
the model to returns data for 18 national equity markets. The paper concludes with Section 6.

2. The model structure

The N-vector rt ∈ RN is treated as a function of K common factors:

rt =
[
C (L) IN

] [
f̃ ′t u′t

]′
= C (L) f̃t + ut , (1)

Ψ (L) ut = εt = G
1/2
t zt , (2)

Gt = diag
(
σ 2t =

[
σ 21,t σ 22,t . . . σ 2N,t

]′)
, (3)

σ 2i,t = E
(
σ 2i |It−1

)
= $i +

P∑
p=1

αi,pε
2
i,t−p +

Q∑
q=1

βi,qσ
2
i,t−q, i = 1, 2, . . . ,N, (4)

where C (L) is a polynomial in the lag operator L, f̃t is a K -dimensional vector,Ψ (L) = IN−Ψ1L−Ψ2L2−. . .−ΨdLd for finite d,
Ψj = diag

([
ψ1,j ψ2,j . . . ψN,j

])
for j = 1, 2, . . . , d, zt is a multivariate standard normal vector zt ∼ iid MVN

(
∅N,1, IN

)
and ∅a,b is an a × b matrix of zeros. The GARCH specification in Eq. (4) is chosen given both its popularity and as a means
of highlighting an exact estimator of King et al.’s (1994) model. The solutions in Sections 3 and 4, however, cater for any
(boundedly) deterministic, recursive volatility form σ 2i,t .
Each common factor is constructed as per the following:
φk (L) fk,t = µk,t + ek,t , (5)

ek,t ∼ N
(
0, σ 2k,t

)
, (6)

where φk (L) = 1 − φk,1L − . . . − φk,N(k)LN(k), µk,t =
∑M(k)
m=1 µ̃k,mSk,m,t and σ

2
k,t =

∑M(k)
m=1 σ̃

2
k,mSk,m,t for finite N(k),M(k),

and E
(
fk,aub

)
= 0∀a, b. Sk,m,t is a discrete latent variable taking the value unity if state m = m (k) at time t , m (k) ∈ Mk =

{m ∈ N : m ≤ M (k) ∈ N}, and zero otherwise. The probability of state m prevailing is determined in accordance with the
Markovian transition matrix:

Prk =

 P1,1,k · · · PM(k),1,k
...

. . .
...

P1,M(k),k · · · PM(k),M(k),k

 ,
where Pr ′k1M(k) = 1M(k) and 1M(k) is an M(k)-dimensional column vector of ones, implying that Pm1,m2,k represents the
unconditional probability of a transition from statem1 to statem2 for the kth factor.
There are several motivations for this specification. Given M(k) = 1∀k, the model collapses to the popular King et al.

(1994) model used to estimate common factors among national equity markets in the presence of factor persistence and
GARCH volatility. A significant difference, however, is that in this paper themodel is estimated exactly, thereby avoiding the
biases involved in King et al.’s approximate solution (see, Tsiaplias (2007)). Alternatively, given σ 2i,t = σ

2
i , and φ = ψ = 1,

the specification collapses to the heteroscedastic common component form often used to estimate co-movement levels in
the presence of common time-varying shocks (Diebold and Nerlove, 1989; Engle and Susmel, 1993; Kim and Nelson, 1998).
In the absence of these simplifying restrictions the specification jointly accommodates asset returns exhibiting persistent

common and idiosyncratic factors, common Markovian jumps, and conditionally heteroscedastic volatility.1 All the three
properties are relevant inmodelling asset returns. Traditionally, the use of lower frequency data ensured that the assumption
of uncorrelated common and idiosyncratic factors (φ = ψ = 1), in addition to simplifying the estimation process,
was uncontroversial. In weekly or higher frequency data, however, such assumptions are likely to be violated as trading
behaviour induces feedback effects (see, for example, Daniel et al. (1998, 2001).
Both the literature on jump models (Duffie et al., 2000; Eraker et al., 2003) and observation of actual financial

market behaviour indicate that returns and volatility levels of a large number of markets frequently jump up or down
together. The common Markovian jumps accommodate this behaviour. However, although jump effects may suffice in
capturing heteroscedasticity at lower frequencies (Kim and Nelson, 1998), higher frequency data tend to exhibit residual
heteroscedasticity in spite of jump effects.2 This residual heteroscedasticity complicates the observed volatility structure
and motivates the additional incorporation of asset-specific GARCH effects.

1 Idiosyncratic volatility may also be modelled as a stochastic volatility process (see, for example, Kim et al. (1998)). GARCH idiosyncratic volatilities
are chosen in this paper as a basis for comparing King et al.’s (1994) approximate solution for the Kalman filter with GARCH terms with the exact and
approximate solutions to the Kalman filter with GARCH and Markov regime-switching terms presented here.
2 This is observed empirically in the national equity market returns data used in this paper. Heteroscedasticity is adequately captured using regime

switching for monthly returns. For weekly returns, however, residual heteroscedasticity is observed for all markets notwithstanding regime-switching
volatility.
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