
Computational Statistics and Data Analysis 53 (2008) 394–404

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

MinimumMSE regression estimator with estimated population
quantities of auxiliary variablesI

Mingue Park ∗, HyungJun Cho
Korea University, South Korea

a r t i c l e i n f o

Article history:
Received 7 June 2007
Received in revised form 26 July 2008
Accepted 1 August 2008
Available online 8 August 2008

a b s t r a c t

Construction of a regression estimator inwhich the populationmeans of auxiliary variables
are estimated with a larger sample is considered. Using the variances of the estimated
population means, and the correlation between auxiliary variables and the variable of
interest, a design consistent regression estimator that has minimummodel mean squared
error under a working model is derived. A limited simulation study shows that the
minimum model mean squared error regression estimator performs well compared to
the generalized least squares regression estimator, even when the working model is
inappropriate.
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1. Introduction

Use of information about the population in constructing design and estimation procedures is common in survey sampling.
The information, sometimes called, auxiliary information, often comes from official sources such as a national census. In a
survey of land use, the total surface area and the area in permanentwater bodiesmay be available fromnational data sources.
Based on the type of auxiliary information, we can use the information in designing a survey, in constructing an estimator
or in both of these phases. If we have detailed information, for example xi for every element in the population, we can
use the information to select a sample through a stratification or to order the population for the selection of a systematic
sample. Regression estimation is one of the important procedures that use auxiliary information in the estimation stage
to construct efficient estimators. The information that is necessary to define a regression estimator is only the population
means of auxiliary variables. For discussion of the efficiency of a regression estimator, see Cochran (1977) and Särndal et al.
(1992). A review of regression estimation for sample surveys is given by Fuller (2002).
One regression estimator of the population mean is a linear estimator

ȳreg =
∑
i∈A

wiyi (1)

where thewi minimize∑
i∈A

(wi − αi)
2 φii , (2)

subject to∑
i∈A

wi(1, xi) = (1,µx) , (3)
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φii is the weight used to define a regression coefficient estimator, αi is the sampling weight, A is a set of indices selected in
the sample and µx is the population mean vector of auxiliary variables x = (x1, . . . , xp). One possible weight αi is

αi =

(∑
j∈A

π−1j

)−1
π−1i , (4)

where the πi are the selection probabilities. The choice of weight φii used to define the distancemeasure between αi and the
final weight wi is arbitrary. Usually φii is assumed to be known up to a constant. The commonly used φii is the function of
the model variance of the error in the linear regression superpopulation model. The choice of φii is discussed well in Wright
(1983). The linear restrictions (3), called the calibration equation, improve the efficiency of the regression estimator when
the study variable and auxiliary variables are linearly related and µx is known.
It is often the case that the populationmeans of auxiliary variables that are necessary to define a regression estimator are

not available, or are not the fixed true values. Auxiliary information from a large scale survey may have a significant uncer-
tainty. For example, the US census values, counted every ten years, are known to have an overall undercount on the order of
about 1.2%. Using regression estimation, coverage studies have been conducted to estimate the undercount as a part of the
US census. See Isaki et al. (2000). When the population means of auxiliary variables are not available, two phase sampling
can be used to collect the necessary information by selecting a relatively larger sample in the first phase. The estimation
for two phase samples is discussed in Särndal and Swensson (1987) and Hidiroglou and Särndal (1998). Recently, a chain
regression type estimator for the populationmean and total with two phase sampling designs has been introduced by Singh
et al. (2006). For the variance estimation for two phase samples, see Sitter (1997), Fuller (1998) and Kim and Sitter (2003).
In our study, we consider the regression estimation of the population mean of a study variable when the population

means of auxiliary variables were estimated using another large sample. We consider two possible cases depending on the
structure of the two samples. In one of the cases, the estimator of the population mean vector of auxiliary variables from a
larger sample is uncorrelatedwith the one froma smaller sample. In the other case,we consider a two phase sampling design
where the estimators from the first phase sample and second phase sample are correlated. Hidiroglou (2001) and Judkins
and Hidiroglou (2004) discussed the regression estimation with these two cases. With an estimator of the population mean
vector of auxiliary variables, µ̂x, the restriction

∑
i∈Awixi = µ̂x may result in a loss of efficiency and a bias of the regression

estimator when µ̂x 6= µx.
For the appropriate use of incomplete information on the population means of auxiliary variables, we consider a

procedure that replaces the linear constraints
∑
i∈Awixi = µ̂x with a component in the objective function (2), and compare

the procedure to the generalized least square predictor. The estimator obtained by relaxing the linear constraints has the
formof a ridge regression estimator. To provide an optimal property for the estimator,we derive the optimal ridge coefficient
matrix under aworking linearmodel and use the ridge coefficientmatrix to define a ridge type regression estimator.We also
show the defined optimal estimator is design consistent, thus it is robust tomodel failure in a large sample framework. Note
that the property of design consistency does not depend on the working model. A detailed outline of the paper is as below.
In Section 2, we define a generalized least squares regression estimator that is appropriate under a general linear model

for the estimators of the means of auxiliary variables and a study variable. The result of Hidiroglou (2001) is reconfigured in
the generalized least squares prediction framework in this section. In Section 3,we construct a new regression estimator that
has approximately aminimummodelmean squared error (MSE) under theworkingmodel, and is design consistent by using
the idea that is also useful to derive a nonnegative or a non-extreme regression weight. In Section 4, through a simulation
study, we demonstrate that the minimum MSE regression estimator performs well, even when the working model fails to
explain the relationship between study variables and auxiliary variables. In Section 5, we describe our application of the
minimumMSE regression estimator to a soil carbon study for estimating the mean soil carbon near Mead, Nebraska.

2. Generalized least squares prediction

To define a generalized least squares regression estimator when the population means of auxiliary variables are not
available, consider the linear model for z̄ = (x̄1, x̄2, ȳ2)′

z̄ = Dzµz + ez, (5)
where Dz = Blockdiag[(I, I)′, 1], µz = (µx, µy)′, ez = (ūx1 , ūx2 , ūy2)

′, x̄1 and x̄2 are the estimators of the population mean
of x based on samples A1 and A2, respectively, ȳ2 is an estimator of the population mean of y based on sample A2,µx and µy
are the population means of x and y and ēz has a mean vector of zeros and a variance-covariance matrix

6 =

(
6x1x1 6x1x2 6x1y2
6x2x1 6x2x2 6x2y2
6x2y1 6x2y2 σy2y2

)
.

Estimators of the µx and µy, x̄1, x̄2 and ȳ2, could be weighted means of sampled measurements. Let n1 and n2 denote the
size of two samples A1 and A2, respectively and assume n1 > n2. The values of xi ∈ A1 may not be available. For example, if
the estimator x̄1 is obtained from a large national survey or from a census then only x̄1 and its variance estimator are usually
available. However, if x̄1 is obtained from the first phase sample in a two phase sampling design, we can observe the value
of xi for all units in the first sample.
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