Congenital cytomegalovirus infection Amelia Joseph Nikunj Mahida William Irving Shiu Soo #### Abstract Congenital cytomegalovirus is the most common intrauterine infection and the leading non-genetic cause of sensorineural hearing loss. Worldwide, the birth prevalence is estimated at 7 per 1000 with the highest rates seen in developing countries. The highest intrauterine transmission rates and risk of neurodevelopmental sequelae are associated with primary maternal infections. Transmission occurs less frequently after nonprimary maternal infections due to reactivation or reinfection. 10-15% of infected infants are symptomatic at birth with neurological symptoms present in two-thirds. Infants who are asymptomatic at birth may go on to develop late neurodevelopmental sequelae, with sensorineural hearing loss being the commonest late consequence. Prenatal, neonatal and retrospective diagnosis can be challenging. Early treatment of symptomatic neonates with the antiviral drug ganciclovir can reduce the long-term neurodevelopmental sequelae. Universal or targeted screening for congenital CMV is not currently advocated. The development of an effective vaccine appears to be some years away. **Keywords** congenital infection; cytomegalovirus; ganciclovir; maternal infection; screening; sensorineural hearing loss # Introduction Human cytomegalovirus (CMV) is one of the most frequent congenital infections in humans. It is the commonest noninherited cause of childhood sensorineural hearing loss (SNHL) **Amelia Joseph BMedsci BMBs** is Microbiology Registrar in the Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK. Conflicts of interest: none declared. Nikunj Mahida мвсьв мsc is Microbiology Registrar in the Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK. Conflicts of interest: none declared. William Irving MBBCh FRCPath PhD is Professor of Virology & Consultant Virologist in the Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK. Conflicts of interest: none declared. Shiu Soo MA PhD MB BChir FRCPath is Consultant Microbiologist in the Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK. Conflicts of interest: none declared. as well as a significant cause of neurodevelopmental delay. It is under-diagnosed because the majority of maternal infections during gestation are asymptomatic. Moreover, many newborns are also asymptomatic at birth but may manifest signs later in life and retrospective diagnosis is difficult. ## **Natural history** CMV is an enveloped, double-stranded DNA ß herpesvirus. Primary entry is usually via a mucosal site, followed by a viraemic phase where the virus infects a wide range of human tissues and subsequent secretion of the virus in bodily fluids such as saliva, urine, breast milk and genital secretions. The primary infection is usually asymptomatic in the immunocompetent host, but may produce an infectious mononucleosis-like syndrome in around 10% of older children or adults. Infection causes well described features in human cells such as cytomegaly, intranuclear inclusion bodies and multinucleated giant cells. In immunocompetent individuals this is followed by an immune response, clearance of the viraemia and subsequent viral latency. In the latent phase, the virus either stops replicating or undergoes low level replication at an undetectable level inside blood monocytes, tissue macrophages and bone marrow stem cells. Intermittently, the virus reactivates from these sites, leading to viraemia and viral shedding in bodily secretions Figure 1. #### **Epidemiology** Seroprevalence of CMV increases with age and is closely related to the socioeconomic levels within a community. In developed countries 50% of women of child-bearing age are seropositive. In developing countries CMV is often acquired earlier in life due to higher breastfeeding rates and crowded living conditions, and up to 90% of child-bearing aged women may be seropositive. The incidence of congenital CMV infection parallels maternal CMV prevalence. Acquisition of CMV during pregnancy often occurs through contact with young children who may shed the virus in their urine and saliva, and through sexual transmission from a partner. The reported rates of congenital CMV infection in developed countries are between 0.6% and 0.7% of live births, with rates in developing countries of between 1% and 5%. # Routes of transmission Vertical transmission of CMV can occur through three routes: intrauterine, intrapartum and post-natal. Intrauterine transmission is the most important route because it leads to congenital infection and its subsequent complications. Intrauterine transmission occurs through transplacental maternal leucocyte translocation, or direct infection of the placenta and amniotic fluid. Congenital CMV may result from either a primary maternal infection, reactivation of the latent maternal virus, or reinfection with a different viral strain during pregnancy. Primary maternal infection occurs in 1–4% of seronegative pregnant women. Transmission rates vary from 30 to 40% in the first trimester to up to 77.6% in the third trimester. However, transmission to the fetus in the first trimester is associated with the greatest risk of severe fetal infection and subsequent developmental sequelae. Congenital infection after non-primary infection in the mother has significantly lower rates (1-3%) of fetal transmission and sequelae. Intrapartum transmission occurs through exposure to the virus in the maternal genital tract. Around 10% of seropositive Figure 1 Electron micrograph of a cytomegalovirus particle. mothers shed CMV in the genital tract at the time of delivery, with about 50% of exposed neonates acquiring infection through this route. Post-natal transmission occurs primarily through viral shedding in breast milk and in oral secretions, and along with intrapartum transmission, usually causes asymptomatic infection in term neonates. In premature neonates very early acquisition of CMV may lead to more significant symptoms. ## **Pathogenesis** Studies of fetuses and neonates with congenital CMV show that the virus infects numerous cell types, with associated inflammatory infiltrate and organ damage. Brain cells of many different types show inclusions with focal necrosis. Epithelial cells of the semi-circular canals, vestibulae, cochlear and other ear structures are affected. Cytomegalic cells and focal necrosis can be seen in the retina, liver, lung and kidney. In addition to direct fetal effects, villitis and vascular necrosis can impair placental function. Neonates with congenital CMV infection are less able to control the infection due to immaturity of the immune system. This contributes to the commonly progressive nature of SNHL. Infants infected early in life may continue to shed virus in their urine and other secretions, acting as reservoirs of the virus. #### **Clinical manifestations** # Symptomatic congenital CMV infection 10—15% of congenitally infected neonates are symptomatic at birth. Jaundice, petechiae and hepatosplenomegaly are the most common clinical signs. Prematurity, small for gestational age growth parameters, thrombocytopenia and anaemia are frequently present. Other features include chorioretinitis, hepatitis, pneumonitis, colitis, and bone or dental abnormalities. Some degree of neurological abnormality is present in around two-thirds of symptomatic neonates. Table 1 summarizes the common clinical and laboratory findings recorded in a review of 106 infants with symptomatic congenital CMV. Neonates with symptomatic congenital CMV at birth should be considered high risk for long-term sequelae even if initial clinical findings are mild. Studies have shown that between 40 and 90% of symptomatic newborns develop long-term neurodevelopmental sequelae. SNHL occurs in approximately 35%, visual impairment in between 22 and 58%, and cognitive deficits in up to two-thirds. Computer tomography, ultrasound and magnetic resonance techniques can provide evidence of CNS involvement with abnormal CNS imaging being predictive of neurological sequelae. Mortality rates in symptomatic congenitally affected infants have been reported ranging from 4% to as high as 20–30%. # Radiological features Prenatal ultrasound scanning may detect structural or growth abnormalities caused by CMV infection. However, the sensitivity and specificity can be poor as these abnormalities are common to many other congenital conditions. Ultrasound findings are present in less than 25% of congenitally infected fetuses, therefore negative scans can only suggest reduced risk, but cannot exclude congenital CMV infection. Intrauterine growth restriction, abnormal amniotic fluid volume (usually oligo- rather than polyhydramnios), hyperechogenic bowel, pleural effusions and liver calcifications may be visible. Microcephaly, cerebral ventriculomegaly and intracranial calcifications are the commonest neurological abnormalities detected on prenatal ultrasound scanning. Cerebral ultrasound abnormalities are strongly associated with a poor prognosis in relation to neurological and cognitive development. Placental pathology, for example placental enlargement or infarcts, may also be visible on ultrasound. # Differential diagnosis There are a number of congenital infections causing differential diagnostic problems including toxoplasmosis, rubella, parvovirus B19 and syphilis. Toxoplasmosis may cause cerebral calcifications, chorioretinitis and usually a macular, rather than petechial, rash. Rubella may present with petechiae, bone defects and SNHL. Parvovirus B19 can cause hepatomegaly and anaemia. Early congenital syphilis may cause hepatosplenomegaly, bony changes and lymphadenopathy. Neonatal infections may also mimic the symptoms of congenital CMV. Disseminated herpes simplex infection, enteroviral infection and bacterial sepsis may have similar clinical or biochemical abnormalities. Non-infectious conditions including a large number of metabolic disorders may also produce similar features. # Asymptomatic congenital CMV infection The remaining 85–90% of congenitally infected neonates are asymptomatic at birth. Given that maternal infection is also likely to be asymptomatic, this makes the detection and diagnosis of these neonates particularly difficult. Lower rates of neuro-developmental sequelae are reported in asymptomatic children compared to symptomatic children. Approximately 5–15% of asymptomatic neonates go on to develop some long-term sequelae with SNHL being the most common manifestation. The long-term risk of cognitive and developmental delay has not been studied systematically, however some studies have shown a degree of cognitive delay or impaired functional abilities on long-term follow-up of asymptomatic infants. # Perinatal infection in premature neonates In term babies post-natal acquisition of CMV (for example through breastfeeding) has little significance. In contrast, # Download English Version: # https://daneshyari.com/en/article/4172168 Download Persian Version: https://daneshyari.com/article/4172168 <u>Daneshyari.com</u>