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Abstract

Filtering and smoothing algorithms that estimate the integrated variance in Lévy-driven stochastic volatility models are analyzed.
Particle filters are algorithms designed for nonlinear, non-Gaussian models while the Kalman filter remains the best linear predictor
if the model is linear but non-Gaussian. Monte Carlo experiments are performed to compare these algorithms across different
specifications of the model including different marginal distributions and degrees of persistence for the instantaneous variance. The
use of realized variance as an observed variable in the state space model is also evaluated. Finally, the particle filter’s ability to
identify the timing and size of jumps is assessed relative to popular nonparametric estimators.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper contributes to the literature on parametric modeling of volatility by comparing various filtering and
smoothing algorithms for the non-Gaussian Ornstein–Uhlenbeck (OU) stochastic volatility models introduced by
Barndorff-Nielsen and Shephard (2001a) and extended in Barndorff-Nielsen and Shephard (2003). The instantaneous
variance in these models is driven by a non-Gaussian Lévy process, which requires approximate recursions for filtering
and smoothing. I examine how well the particle filter compares to the Kalman filter at estimating the integrated variance
under a number of different specifications of the model. I also consider estimation of jumps by the particle filter and
smoother. The goal of the article is to build on some of the comments in the original paper. The filtering algorithms
considered here are applicable regardless of the method used to estimate the model’s parameters. Parameters for the
BNS-SV model have been estimated using quasi-maximum likelihood in Barndorff-Nielsen and Shephard (2002) and
Barndorff-Nielsen et al. (2004); the smooth particle filter of Pitt (2001); Markov chain Monte Carlo (MCMC) in
Roberts et al. (2004), Gander and Stephens (2005), and Griffin and Steel (2006); minimum distance estimation in
Todorov (2006); and sequential Monte Carlo samplers in Del Moral et al. (2006). MCMC can also be used to compute
smoothed estimates, but that is beyond the scope of this article.

When there are no jumps, both filtering algorithms estimate increments of the integrated variance almost exactly, even
at moderate intra-daily frequencies. When returns are sampled at low frequencies, the Kalman filter’s performance is
more robust than the particle filter. These differences can be large in practice depending on the marginal distribution of
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the instantaneous variance. If returns are available at higher frequencies, the particle filter offers a moderate improvement
over the Kalman filter. The size of the improvement also depends on the marginal distribution of the instantaneous
variance. The particle filter struggles when the variance of the stationary distribution is larger. Small misspecifications
of the marginal distribution can potentially lead to poorer estimates from the particle filter. These differences can be
large enough to make the Kalman filter and smoother competitive at estimating the integrated variance at any frequency
at which returns are sampled.

Finally, I also compare the particle filter and smoother’s ability to estimate jumps versus the jump statistics developed
in Barndorff-Nielsen and Shephard (2004). Results indicate that the particle filter identifies the jump times and sizes
well.

2. Lévy-driven stochastic volatility models

2.1. Price processes with stochastic volatility and jumps

I assume that the log-price process y∗(t) takes the form

dy∗(t) = (� + ��2(t)) dt + �(t) dB(t) + � dz̄(�t), (1)

where � is the drift and � is the risk premium. The instantaneous variance �2(t) is assumed to be independent of the
standard Brownian motion B(t). Following Barndorff-Nielsen and Shephard (2001a), the instantaneous variance is
specified as a non-Gaussian OU process

d�2(t) = −��2(t) dt + dz(�t), (2)

where z(t) is a Lévy process called the background driving Lévy process. The process z(t) is also known as a subordina-
tor. The timing of the subordinator (dz(�t) versus dz(t)) is intentionally designed to separate the marginal distribution
of the instantaneous variance from its autocovariance function. Lévy processes are a general group of continuous time
stochastic processes that have independent and stationary increments, see e.g. Cont and Tankov (2004). The compen-
sated version of the subordinator, z̄(t) = z(t) − E{z(t)}, in (1) accounts for the leverage effect with � determining the
direction of the jumps in the price.

Regardless of the model for the instantaneous variance, the integrated variance is defined as

�2∗(t) =
∫ t

0
�2(u) du.

Defining h̄ to be the length of time between two periods of interest (e.g. 1 day), increments of the integrated variance

�2
n = �2∗(h̄n) − �2∗(h̄(n − 1))

are known as the actual variance and they are a critical ingredient in option pricing and risk management. For this
model, the actual variance has a simple structure:

�2
n = �−1{z(�h̄n) − �2(h̄n) − z(�h̄(n − 1)) + �2(h̄(n − 1))}. (3)

It can be calculated by simulating the continuous time process[�2(h̄n)

z(�h̄n)

]
=

[exp(−�h̄)�2(h̄(n − 1))

z(�h̄(n − 1))

]
+ �n, (4)

where

�n =
[

exp(−�h̄)
∫ h̄

0 exp(�s) dz(�s)∫ h̄

0 dz(�s)

]
. (5)

There are numerous methods for simulating Lévy processes, see e.g. Rosínski (2001b) and Cont and Tankov (2004).
In this paper, I use the series representation from Barndorff-Nielsen and Shephard (2001a) to simulate �2(t) when it
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