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Abstract

Functional networks are used to solve some nonlinear regression problems. One particular problem is how to find the optimal
transformations of the response and/or the explanatory variables and obtain the best possible functional relation between the response
and predictor variables. After a brief introduction to functional networks, two specific transformation models based on functional
networks are proposed. Unlike in neural networks, where the selection of the network topology is arbitrary, the selection of the initial
topology of a functional network is problem driven. This important feature of functional networks is illustrated for each of the two
proposed models. An equivalent, but simpler network may be obtained from the initial topology using functional equations. The
resultant model is then checked for uniqueness of representation. When the functions specified by the transformations are unknown
in form, families of linear independent functions are used as approximations. Two different parametric criteria are used for learning
these functions: the constrained least squares and the maximum canonical correlation. Model selection criteria are used to avoid the
problem of overfitting. Finally, performance of the proposed method are assessed and compared to other methods using a simulation
study as well as several real-life data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of investigating the functional relationship between a response variable Y and one or more predictor
variables X1, X», ..., Xj is of interest. In many practical situations, the form of such a functional relationship is
unknown. Additionally, discovering such a relationship may also require transformation of the response and/or the
predictor variables. The problem of transformation in regression modeling has attracted considerable attention in the
literature. See, for example, Atkinson (1985), Carroll and Ruppert (1988), and the references therein.

In this paper, we are mainly interested in solving two problems:
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Problem 1: Transforming prediction variables (modeling). When the goal of the analysis is to model Y as a function
of X1, X2, ..., Xk, the transformation involves only the predictor variables. Here we assume that the relationship
between the response and predictor variables can be expressed as

Y =h(X1, X2,..., Xp) +¢, (D
where ¢ is a random error whose expected value is assumed to be 0. Then, the problem is to discover the structure of

the function £ in (1).

Problem 2: Transforming response variable. In some applications transformation may involve both the response
and predictor variables. In this case, we assume that the relationship between the response and predictor variables can
be written as

fY)=h(X1, X2, ..., Xp) +¢ (2)

where ¢ is a random error whose expected value is assumed to be 0. Our task here is to discover the structure of
transformations f'and 4 in (2).

There are several ways for the formulation and estimation of the models in (1) and (2). On the one hand, one may
first consider the classical multiple linear regression

Y:ﬁo+ﬁ1X1+ﬁ2X2+"'+ﬁka+8, (3)

where fiy, i1, ..., Py are the parameters to be estimated from the data. Then, if needed, a nonlinear transformations of
the response and/or the explanatory variables are commonly used in regression problems to achieve certain desirable
conditions such as linearity, normality, and homoscedasticity. In this case, (3) can be written as

FY)=Bo+ Bihi(X1) + Prha(X2) + -+ + Brhe(Xk) + &, “)
and now the problem consists of estimating the parameters f, f;, ..., f; and to discover the transformations /1,
ha, ..., hi, and f (some of them can be the identity function).

The models in (3) and (4) are parametric models and they have considerable success in a variety of applications,
despite their rigid linear form for 4 in (1) or (2). These forms, however, may not be appropriate for many more complex
situations.

On the other hand, nonparametric methods, which make minimal assumptions about the form of % in (1) or (2),
can be used. For example, a nonparametric additive model is obtained by replacing the linear function f8; X; in (3),
J=1,...,k, by anonlinear function /(X ;) to get

Y =hi (X)) +ho(X2) + -+ e (X)) + &, (5)
or, when nonlinear transformation of the response is necessary,
SX)=h1(X1) + h2(X2) + - -+ e (X)) + & (6)

This generalization retains some important features of the linear approximation: It is additive in the explanatory
variables effect and it allows us to separately examine the roles of the explanatory variables in modeling the response.
The nonlinear functions 4, j =1, ..., k, in (5) are smooth functions and an iterative procedure is needed to fit the
model. Also, more complex than simple component-wise additive functions can be used in the additive model (see,
e.g., Hastie and Tibshirani, 1990; Friedman and Stuetzle, 1981).

When the transformation of the response variable is also needed, the function f in (6) can also assumed to be an
arbitrary smooth function. In this case, techniques for fitting the model in (6) include alternating conditional expectation
(ACE) algorithm (Breiman and Friedman, 1985) and additivity and variance stability (AVAS) transformation procedure
(Tibshirani, 1988).

Other nonparametric techniques such as piecewise and local multiple regression, regression trees and multivariate
adaptive regression splines (MARS) tackle the approximation of % in (1) by fitting several simple parametric functions
in different pieces of the observed domain (see, for example, Friedman, 1991; Fox, 2000; and the references therein).
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