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a b s t r a c t

Based on the random matrix theory, a unified numerical approach is developed for
power calculation in the general framework of hypothesis testing with high-dimensional
covariance matrices. In the central limit theorem of linear spectral statistics for sample
covariance matrices, the theoretical mean and covariance are computed numerically.
Based on these numerical values, the power of the hypothesis test can be evaluated, and
furthermore the confidence interval for the unknown parameters in the high-dimensional
covariance matrix can be constructed. The validity of the proposed algorithms is well
supported by a convergence theorem. Our numerical method is assessed by extensive
simulation studies, and a real data example of the S&P 100 index data is analyzed to
illustrate the proposed algorithms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional data become commonplace in the modern big data era, particularly in the fields of finance, genomics,
informatics, image analysis, and so on. Estimation and inference based on the sample covariance matrix are fundamentally
important in multivariate statistical analysis. However, when the dimensionality grows with the sample size, the
conventional estimate of the covariance matrix is inconsistent (Bai and Yin, 1993), which thus leads to poor inference
procedures in the high-dimensional setting. To address the inconsistency issue, extensive research has been conducted
on estimation of high-dimensional covariance matrices. In particular, the random matrix theory is able to attenuate the
randomness of the sample covariance matrix, and thus is widely used as a popular tool to achieve efficient statistical
inference on the high-dimensional covariance matrices. Bai and Silverstein (2004) and Zheng et al. (2015) established the
central limit theorem (CLT) of linear spectral statistics (LSS) for large dimensional sample covariance matrices when the
dimension p and the sample size n increase proportionally; that is, p/n → c where c is some constant in (0, ∞).

Based on the CLT of LSS of sample covariance matrices, extensive research has been carried out on testing the high-
dimensional covariance matrix structures. For example, Bai et al. (2009) proposed to test whether the high-dimensional
covariance matrix is equal to a specified matrix. Nevertheless, there is no explicit power function, because the asymptotic
mean and covariance in the CLT of LSS of large dimensional covariance matrices are expressed by the contour integrals that
cannot be derived in closed forms. In hypothesis testing, power functions are important for evaluating the effectiveness of
the testing methods. For example, Chen et al. (2012), Onatski et al. (2013) andWang (2014) studied the power functions for
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different covariance testing problems. However, all these power functions are derived for some specific high-dimensional
covariance structure, and may not be generally applicable.

Our method is motivated by a real example in financial studies. As a preliminary step, the equicorrelation structure is
commonly adopted for analyzing the correlation structures among financial assets (Ledoit and Wolf, 2004; Kyj et al., 2009;
Engle and Kelly, 2012). Given the return data on a set of stocks, it is of great importance to examinewhether the stock returns
are equicorrelated. Therefore, the hypothesis testing procedure can be used to reduce the risk of inappropriate modeling
for the covariance matrix. In addition to testing the covariance structure, the confidence intervals of the equicorrelation
coefficients can provide useful information on the movement of stock prices. Unfortunately, it is often challenging to
compute the power and confidence intervals as the number of assets is typically large relative to the number of observations.

Our goal is to provide a general numerical algorithm for computing the asymptotic mean and covariance in the CLT of LSS
of large-dimensional sample covariance matrices in Zheng et al. (2015). The numerical algorithm can be used to obtain the
power functions of high-dimensional covariance tests. Moreover, when the covariance matrix 6 is characterized by some
low dimensional parameters ρ, say 6 = 6(ρ), the confidence region of ρ can be numerically constructed as well.

The rest of the paper is arranged as follows. Section 2 establishes a general lemma based on Zheng et al. (2015) and
provides a numerical algorithm for computation of the theoretical mean and variance in the CLT of LSS of sample covariance
matrices. The power function for hypothesis testing and confidence intervals for the parameters in the covariance matrix
are also derived. Section 3 exhibits some simulation studies, and Section 4 conducts a real data analysis on the S&P 100 index
data for illustration of our proposal. Section 5 concludes with a discussion and technical details are delineated to Appendix.

2. Power and confidence interval

2.1. Motivating example: Hypothesis testing of a covariance matrix

Let {y1, . . . , yn} be a sample from the population with mean vector µ and covariance matrix 6, where yi is a p-
dimensional random vector, i = 1, . . . , n. It is of interest in multivariate statistical analysis to test

H0 : 6 = Ip,

where Ip is the identity matrix of dimension p (Anderson, 2003). For a more general framework, the identity matrix Ip in
the null hypothesis H0 can be replaced by any positive-definite covariance matrix 60. Many well-known test statistics are
constructed as functionals of the eigenvalues of the sample covariance matrix, which is defined as

Sn =
1

n − 1

n
i=1

(yi − ȳ) (yi − ȳ)T ,

where ȳ = n−1n
i=1 yi is the sample mean and the superindex ‘‘T ’’ denotes the transpose. Hereafter, such statistics are

referred as linear spectral statistics (LSS). For example, the likelihood ratio test (LRT) statistic for the Gaussian case is given
by

Tn =

p
j=1

trSn − log |Sn| − p,

where ‘‘tr’’ denotes the trace of a matrix. Bai et al. (2009) established the CLT for Tn under the null hypothesis H0 for high-
dimensional cases when cn = p/n → c ∈ (0, ∞), while the theoretical power function was not derived despite its
importance in hypothesis testing. Moreover, when 6 is characterized by some parameters ρ, i.e., 6 = 6(ρ), it is also of
interest to construct the confidence region for ρ.

2.2. CLT of LSS for sample covariance matrices

Let {λ1 ≤ · · · ≤ λp} be the eigenvalues of the population covariance matrix 6. The empirical spectral distribution (ESD)
of 6 is given by

Hp(x) =
1
p

p
j=1

δ{λj ≤ x}, for any x ∈ R

where δ{·} is the indicator function and R is the real line. Let {λ̂1 ≤ · · · ≤ λ̂p} be the eigenvalues of the sample covariance
matrix Sn, and correspondingly the ESD of Sn is

Fn(x) =
1
p

p
j=1

δ{λ̂j ≤ x}, for any x ∈ R.

The Marčenko–Pastur scheme is adopted; that is,

cn = p/n → c ∈ (0, ∞), as p, n → ∞.
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