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a b s t r a c t

We propose a Bayesian variable selection method for fitting the finite mixture model of
linear regressions. The model assumes that the observations come from a heterogeneous
population which is a mixture of a finite number of sub-populations. Within each sub-
population, the response variable can be explained by a linear regression on the predictor
variables. If the number of predictor variables is large, it is assumed that only a small subset
of variables are important for explaining the response variable. It is further assumed that
for different sub-populations, different subsets of variables may be needed to explain the
response variable. This gives rise to a complex variable selection problem. We propose to
solve this problem within the Bayesian framework where we introduce two sets of latent
variables. The first set of latent variables are membership indicators of the observations,
indicating which sub-population each observation comes from. The second set of latent
variables are inclusion/exclusion indicators for the predictor variables, indicating whether
or not a variable is included in the regressionmodel of a sub-population. Variable selection
can then be accomplished by sampling from the posterior distributions of the indicators
as well as the coefficients of the selected variables. We conduct simulation studies
to demonstrate that the proposed method performs well in comparison with existing
methods.We also analyze a real data set to further illustrate the usefulness of the proposed
method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Variable selection is a fundamental problem in linear regression andhas become increasingly important formanymodern
applications. During the past decade, a rich literature has been developed around this problem, especially for the casewhere
large numbers of variables are collected and the number of variables exceeds the number of observations. The methods
proposed for the problem of variable selection can be roughly classified into two categories.

One category consists of various penalized least squares methods, including the famous Lasso method (Tibshirani, 1996)
based on the convex ℓ1 penalty for regularization, as well as non-convex penalties such as SCAD (Fan and Li, 2001) and
MCP (Zhang, 2010). The Lasso approach has also been extended to more sophisticated forms such as the group Lasso and
graphical Lasso; see (Tibshirani, 2011) for a review.

The other category consists of various Bayesian variable selection methods, such as stochastic search variable selection
(SSVS) (George andMcCulloch, 1993; Chen, 2012) andBayesian Lasso (Park andCasella, 2008). TheBayesianmethod assumes
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a prior distribution on the regression coefficients. A popular prior is the so-called ‘‘spike and slab’’ prior, which is a mixture
of a point mass at zero and a diffused Gaussian distribution. Such a prior distribution assumes a binary indicator for each
variable, indicating whether a variable is included in the regression or not. Variable selection can be accomplished by
sampling from the posterior distributions of the latent indicators and the posterior distributions of the coefficients of the
selected variables.

The two categories of methods are related in that the penalty terms correspond to specific Bayesian prior distributions.
The penalized least squares approaches, especially the Lasso and its extensions, usually enjoy a computational advantage
since the objective functions are convex and can be easily minimized.

Despite the wide applicability of the linear regression model powered by modern variable selection tools, a single
regressionmodel can be inadequate if the data come from a heterogeneous population that consists of a number of different
sub-populations with different characteristics. In this situation, it is possible that a separate linear regression model is
needed for each sub-population. Moreover, the regression models in different sub-populations may use different subsets
of predictor variables (or regressors, covariates) to explain the response variable. If the memberships of the observations
are unobserved, then we naturally have a finite mixture model of linear regressions, where each mixture component is a
linear regressionmodel with its own subset of predictor variables. This gives rise to a variable selection problem that ismore
complex than that of a single linear regression model.

To solve the variable selection problem in themixturemodel, onemay extend the penalized least squaresmethods to the
penalized likelihood of mixture models (Khalili and Chen, 2007; Städler et al., 2010). However, the negative log-likelihood
of the mixture model would no longer be convex, causing it to lose one of the most appealing features of the Lasso method
and its various extensions. As a result, one can only draw inference based on local minima of the objective functions. This
difficulty motivates us to adopt a Bayesian alternative which appears more natural.

Specifically, the Bayesian variable selection method for the mixture model involves two sets of latent variables or
indicators. The first set of latent variables are membership indicators associated with the observations, indicating which
sub-population each observation comes from. The second set of latent variables are inclusion/exclusion indicators for the
variables, where, for each sub-population or mixture component, a binary indicator is associated with each predicator
variable, indicating whether or not this variable is included in the linear regression of this mixture component. Variable
selection, clustering, and parameter estimation can then be carried out by sampling from the posterior distributions of the
indicators and the posterior distributions of the coefficients of the selected variables. Our simulation studies show that the
Bayesian method performs well compared with existing methods and that the corresponding Markov chain Monte Carlo
(MCMC) algorithmmay be capable of escaping the traps of local minima. We also analyze a real data set to further illustrate
the usefulness of the proposed method.

The rest of the article is organized as follows. Section 2 presents the finite mixture model of linear regressions and its
Bayesian treatment, including the prior specifications and the MCMC algorithm for posterior sampling. Section 3 illustrates
our method by simulation studies, where our method is compared with existing methods. Section 4 describes our analysis
of a real data set to further illustrate our method. Section 5 discusses implementation issues concerning posterior inference,
MCMC sampling and model selection criteria. Finally Section 6 concludes with a brief discussion.

2. Finite mixture model of linear regressions

Let (yi, xi), i = 1, . . . , n, be a data set of n observations that come from a heterogeneous population, where yi is the
response variable of the ith observation, and xi = (xi1, . . . , xip)′ collects the p predictor variables or covariates of the ith
observation. We assume that the heterogeneous population consists of M sub-populations or mixture components, and
within each sub-population, (yi, xi) follows a separate linear regression model. Specifically,

yi|(ρm, βm, σ 2
m,m = 1, . . . ,M) ∼

M
m=1

ρm · N

x′

iβm, σ 2
m


, (1)

where ρ = (ρ1, . . . , ρM) is the proportion vector of the M sub-populations, with ρm ≥ 0 and
M

m=1 ρm = 1. βm =

(βm1, . . . , βmp)
′ is the coefficient vector for the linear regression in themth sub-population. σ 2

m is the corresponding variance
of the Gaussian residual errors.

2.1. Two sets of latent variables

As is standard for the mixture model, we introduce a latent variable zi for each observation i, so that zi = m indicates
that the ith observation comes from themth sub-population. Thus P(zi = m) = ρm, i.e.,

zi ∼ Multinomial(ρ1, . . . , ρM), and [yi|zi = m] ∼ N

x′

iβm, σ 2
m


.

In modern applications of linear regression models, the number of predictors p can be large, and it is often assumed that
the coefficient vector is sparse, i.e., only a small number of its components are different from zero. In other words, only a
small number of predictor variables are to be included in the regression model. We assume that this is the case with the
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