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a b s t r a c t

Multiple imputation is a commonly used approach to deal with missing values. In this
approach, an imputer repeatedly imputes the missing values by taking draws from the
posterior predictive distribution for themissing values conditional on the observed values,
and releases these completed data sets to analysts. With each completed data set the
analyst performs the analysis of interest, treating the data as if it were fully observed. These
analyses are then combined with standard combining rules, allowing the analyst to make
appropriate inferences which take into account the uncertainty present due to the missing
data. In order to preserve the statistical properties present in the data, the imputer must
use a plausible distribution to generate the imputed values. In data sets containing variables
with different measurement scales, e.g. some categorical and some continuous variables,
this is a challenging problem. A method is proposed to multiply impute missing values in
such data sets by modelling the joint distribution of the variables in the data through a
sequence of generalised linear models, and data augmentation methods are used to draw
imputations froma proper posterior distribution usingMarkov ChainMonte Carlo (MCMC).
The performance of the proposed method is illustrated using simulation studies and on a
data set taken from a breast feeding study.

© 2015 Published by Elsevier B.V.

1. Introduction

Multiple imputation is a widely used and appealing approach to deal with missing values (Rubin, 1996; Gelman et al.,
2005; Wallace et al., 2010; Bernhardt et al., 2014; Hapfelmeier and Ulm, 2014; Xu and Zhang, 2010; Consentino and
Claeskens, 2010). In this approach the imputer models the joint distribution of the variables in the data set and, using
this model, imputes missing values from their posterior predictive distribution conditional on the observed data. This is
done m times to yield m multiply imputed data sets which are then given to the analysts. Analysts can then perform the
same standard analysis that would have been performed on fully observed data on each of these completed data sets, and
combine the analyses across data sets using simple combining rules, thereby incorporating the additional uncertainty due to
the missing values. An appealing feature of multiple imputation is that the imputer and analyst can be different individuals,
as this allows trained statistical modellers to deal appropriately with the often complex missing data problem, and reduces
the subsequent burden on the analyst, who is often not a proficient modeller, of dealing with the missing values.
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It is crucial to draw imputations from an appropriate distribution to preserve relationships present in the data set. There
are often complications in drawing imputations from their posterior predictive distribution: (1) the pattern ofmissing values
in the data set may not be monotone, and (2) the variables in the data set may be continuous or categorical. One way
to simplify this problem is to model the joint distribution of variables in the data set through a sequence of generalised
linear models (GLMs) where the link function of the GLM is determined by the measurement scale of the variable being
modelled; missing values can then be imputed on a variable by variable basis. This approach has some advantages over
multivariate imputation models (Schafer, 1997), as it is easier to detect model inadequacies in each GLM than having to
assess the fit over a joint model for the whole data set. Still, to draw imputations with a non-monotone pattern of missing
values from their joint posterior predictive distribution requires Markov Chain Monte Carlo (MCMC) methods (Little and
Rubin, 2002). In this article we use the decomposition above and data augmentation methods (Albert and Chib, 1993) to
draw missing values from their posterior predictive distribution. In data sets with continuous, binary and ordinal variables
such an approach allows imputations to be drawn within a Gibbs sampler. When data sets include nominal variables, we
develop a Metropolis within Gibbs sampler to impute missing values with an innovative Metropolis–Hastings proposal
distribution.

The decomposition above has been previously proposed in the literature to deal withmissing values (Ibrahim et al., 2005,
1999, 2002; Chen and Ibrahim, 2001). While these approaches use the same decomposition, they do not present specific
models to use for each conditional regression, instead presenting the strategy as a general framework. Some also focus on
methods to obtainmaximum likelihood estimates from the data through the construction of E–M algorithms (Ibrahim et al.,
1999; Chen and Ibrahim, 2001). For those that proceed with Bayesian modelling using this decomposition (Ibrahim et al.,
2002, 2005), the computations are also typically performed in a different way to those described in this article, making
use of adaptive rejection sampling (Gilks and Wild, 1992). The data augmentation methods used in this article to model
variables in the data have also been considered in the literature. De Leon and Carriègre (2007) use similar models proposed
in this article to jointly model categorical and continuous variables, but are primarily concerned with likelihoodmethods to
estimate parameters of the distribution. Unlike this article, De Leon and Carriègre (2007) also do not explicitly embed the
imputation of missing values within a full Bayesian framework. Another article by Goldstein et al. (2009) proposes a related
imputation modelling strategy for multilevel models, that uses latent normal random variables. However, our approach
differs fundamentally with Goldstein et al. (2009) in themodelling of nominal variables, and thus also in the development of
the posterior computations. To our knowledge no article has comprehensively reviewed the proposed imputation approach
through extensive simulation studies, and the development of the innovative Metropolis–Hastings algorithm in this article
is an original contribution within multiple imputation for missing data.

We illustrate the performance of this imputation strategy on simulated data as well as on a breast feeding study. We also
compare the performance of this strategy with the approach of multiple imputation via chained equations (MICE) in these
scenarios. MICE is a commonly used method for imputing missing values in these types of situations (Raghunathan et al.,
2001; Van Buuren, 2011) and so it would be interesting to see if there were any advantages gained by using themore formal
modelling strategy proposed.

The remainder of the article is structured as follows; Section 2 briefly reviews the approach ofmultiple imputation to deal
with the problem ofmissing values. Section 3 describes themodelling strategy we propose for imputingmissing values, and
briefly describes the approach of MICE to impute missing values, Section 4 illustrates the performance of both approaches
in a simulation study, Section 5 illustrates the performances of both approaches in a breast feeding study, finally Section 6
presents some concluding remarks.

2. Missing data and multiple imputation

In this section we briefly describe the missing data framework and how the multiple imputation procedure is used for
inference. We suppose that we have a n × p data set X = (x1, . . . , xp), where xj = (x1,j, . . . , xn,j)′, j = 1, . . . , p is the
jth variable in X. Also denote a n × p missing data indicator matrix M = (m1, . . . ,mp), where mj = (m1,j, . . . ,mn,j)

′ and
mi,j = 1 indicates xi,j is missing andmi,j = 0 indicates xi,j is observed, for i = 1, . . . , n and j = 1, . . . , p. We can then denote
the observed and missing portions of X by Xobs = {xi,j : mi,j = 0} and Xmis = {xi,j : mi,j = 1} respectively.

If the conditional distribution of p(M|X, φ) = p(M|Xobs, φ), where φ are the parameters of the distribution, so
missingness depends only on the observed components in X , then the data are said to be missing at random (MAR) (Little
and Rubin, 2002). In this article we focus on covariates that are MAR, so the modelling strategy proposed in the next section
makes this assumption and the simulations in Section 4 utilise MAR mechanisms.

We assume that an analyst wishes to use the data to infer about some population quantity Q , this might be for example
the mean of jth variable or it could be the coefficient from a regression model for one of the variables on some other subset
of variables. To do this they obtain a point estimate, q, for Q , and an estimate of its variance u. With the presence of missing
data, analysts may no longer be able to obtain these estimates.

In multiple imputation, the missing values are imputed from their posterior predictive distribution p(Xmis|Xobs), this is
done m times to generate m completed data sets X(1)

com, . . . ,X(m)
com. Analysts can then treat each completed data set as a fully

observed data set to obtain m sets of point and variances estimates (qk, uk) from each X(k)
com, k = 1, . . . ,m. Appropriate

inference for Q can then be made following simple combining rules (Rubin, 1987). Specifically the analyst computes the
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