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a b s t r a c t

Moran’s I is the most popular spatial test statistic, but its inability to incorporate heteroge-
neous populations has been long recognized. This article provides a limiting distribution of
the Moran’s I coefficient which can be applied to heterogeneous populations. The method
provides a unified framework of testing for spatial autocorrelation for both homogeneous
and heterogeneous populations, thereby resolving a long standing issue for Moran’s I . For
Poisson count data, a variance adjustment method is provided that solely depends on pop-
ulations at risk. Simulation results are shown to be consistent with theoretical results. The
application of Nebraska breast cancer data shows that the variance adjustment method is
simple and effective in reducing type I error rates, which in turnwill likely reduce potential
misallocation of limited resources.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past 20 years, improved GIS and computer technologies have led to a rapid expansion of statistical methods
for the analysis of spatial data. The concept and the usage of computational intensive methods, such as Markov random
field methods (Green and Richardson, 2002), geostatistical methods (Gneiting, 2002; Kelsall and Wakefield, 2002; Stein,
2005), and Bayesian disease mapping methods (Waller et al., 1997; Wakefield and Morris, 2001) have developed rapidly. A
growingnumber of social andhealth scientists have takenup the use of the sophisticated technology andnewmethodologies
of spatial analysis in their empirical work (Best et al., 2000; Goodchild et al., 2000; Pickle et al., 2005). Moran’s I is the
most widely used test statistic in spatial statistical literature, and it has been included in major commercial geographic
information systems (e.g., ArcGIS, MapInfo, Intergraph, Imagine), spatial analysis packages (e.g., CrimeStat, GeoDa,
TerraSeer), and some statistical packages (e.g.,MatLab, R, S+, SAS).

Moran’s I coefficient (Moran, 1948) is defined as

I =

m
i=1

m
j=1
wij(Xi − X̄)(Xj − X̄)

S0mb2m
, (1)

where Xi is the variable of interest in region i (i = 1, . . . ,m), X̄ =
m

i=1 Xi/m, S0m =
m

i=1
m

j=1wij, b2m =
m

i=1(Xi−X̄)2/m
and wij with wii = 0 is an element of the spatial weight matrix. Moran’s I mostly ranges between −1 and 1, but it can be
outside of [−1, 1] in extreme cases (Arbia, 2014, P. 2). The absolute value of I is bounded by the square root of the ratio
between the variance of spatially lagged value and the variance of observed values (Arbia, 1989). It has also been shown
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that the value of Moran’s I varies from the largest and the least eigenvalues of the weight matrix (Griffith, 1988). These
conclusions can provide a way to understand the possible ranges for the values of Moran’s I . In applications, a significant
positive autocorrelation indicates the existence of either high-value or low-value clustering,while a negative autocorrelation
indicates a tendency toward the juxtaposition of high values next to low values. If there is no spatial dependence, the
expected value of I is equal to −1/(m − 1), which is close to 0 ifm is large.

The null distribution of Moran’s I is derived from the assumption that distributions of Xi are homogeneous. The p-value
of Moran’s I is based on its z-score defined by Z(I) = [I − E(I)]/

√
V (I), where E(I) and V (I) are the mean and variance

respectively. There are two ways to define the null hypothesis. The first assumes that X1, . . . , Xm are independently and
identically distributed (i.i.d.) and the second assumes that X1, . . . , Xm are obtained from a random permutation of observed
values. The validity of the asymptotic N(0, 1) for Z(I) in the i.i.d. case is evident from Sen (1976), but this assumption
may not be valid for variables based on rate when population sizes among area units vary substantially (Besag and Newell,
1991). Although several alternative methods have been proposed (Assuncao and Reis, 1999; Oden, 1995; Waldhor, 1996;
Whittemore et al., 1987), for reasons listed below, many still use Moran’s I and ignore the potential problems associated
with heterogeneous populations. Heterogeneity continues to be the central problem for epidemicmodels and data (Millison
et al., 1994; Zhang and Lin, 2009).

First, all the alternative methods tend to introduce a new test statistic based on regional counts and populations at-
risk, and none of them have received wide acceptance. For instance, the population weighted Moran’s I proposed by Oden
(1995) is essentially a spatiallyχ2 statistic,which is not always effective to account for heterogeneous populations (Assuncao
and Reis, 1999). Second, some data (e.g., confidential and historical) are only available in rates, for which most alternative
methods cannot be used. Third, it is not clear inwhich situation the population heterogeneity problemwill become a serious
concern, as such thatMoran’s I should not be used. Finally, the proliferation ofMoran’s I in various software packagesmakes
it a candidate for potential misuse as one might simply be unaware of the problem.

In this paper, we attempt to resolve the population heterogeneity issue by providing a unified statistical framework
through the limiting distribution of theMoran’s I coefficient. Since heterogeneous populations could cause variance inflation,
a large sample distribution ofMoran’s I under heterogeneity should be able to gauge and adjust variance inflation or deflation
for Z(I). In the following sections, we first derive a limiting distribution of Moran’s I , and then demonstrate its use with two
numerical examples in Section 3 and a case study in Section 4. Finally, we offer some concluding remarks.

2. Notation and main result

Notation. Assume a study area partitioned into m regions. Let Xi be the variable of interest from the ith region. Suppose
X1, . . . , Xm are assumed to be independent. Let µi = E(Xi), σ 2

i = V (Xi), κi = E[(Xi − µi)
4
], µ̄ =

m
i=1 µi/m, σ̄ 2

=m
i=1 σ

2
i /m. Let Xim = (Xi−µ̄)/σ̄ , X̄ =

m
i=1 Xi/m, X̄·m =

m
i=1 Xim/m,µim = E(Xim) = (µi−µ̄)/σ̄ , σ 2

im = V (Xim) = σ 2
i /σ̄

2

and κim = E[(Xim −νi)
4
] = κi/σ̄

4, i = 1, . . . ,m. Then
m

i=1 µim = 0 and
m

i=1 σ
2
im/m = 1. For a positive integer k, we write

bkm =
m

i=1(Xi − X̄)k/m, b̃km =
m

i=1(Xim − X̄·m)
k/m, ηkm =

m
i=1(µi − µ̄)

k/m and η̃km =
m

i=1 µ
k
im/m. Then b̃km = bkm/σ̄ k

and η̃km = ηkm/σ̄
k. We write wi· =

m
j=1wij/m, w·i =

m
j=1wji/m, S0m =

m
i=1
m

j=1wij, S1m =
m

i=1
m

j=1w
2
ij ,

S2m = m2m
i=1w

2
i· , ψm = S0m/m and ω2

m = 2S1m/m. We denote ψ̃m =
m

i=1
m

j=1 |wij|/m,

θm =

√
m

m
i=1

m
j=1
wij(µi − µ̄)(µj − µ̄)

m
i=1
σ 2
i

=
1

√
m

m
i=1

m
j=1

wijµimµjm (2)

and

τ 2m =

2m
m
i=1

m
j=1
w2

ijσ
2
i σ

2
j

m
i=1
σ 2
i

2 +

4m
m

k=1
σ 2
k


m
j=1
(wkj + w·j)(µj − µ̄)

2


m
i=1
σ 2
i

2

=
2
m

m
i=1

m
j=1

w2
ijσ

2
imσ

2
jm +

4
m

m
k=1

σ 2
km


m
j=1

(wkj + w·j)µjm

2

. (3)

Throughout the paper, we assume that the fourth moment of Xi exists for all i ≤ m. We write
P

→ as convergence in
probability and

L
→ as convergence in law (or in distribution).

Main Result. We impose the following regularity conditions for our main result:
(C1) For any i and j,wii = 0.
(C2) For any fixed i ≤ m, there is a constant C such that

m
j=1 |wij| ≤ C .
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