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a b s t r a c t

Owing to its good properties and a simple model fitting procedure, logistic regression is
one of the most commonly used methods applied to data consisting of binary outcomes
and one ormore predictor variables. However, if the predictor variables aremeasuredwith
error and the functional relationship between the response and predictor variables is non-
linear (e.g., quadratic) then consistent estimation of model parameters is more challenging
to develop. To address the effects of measurement error in predictor variables when
using quadratic logistic regression models, two novel approaches are developed: (1) an
approximated refined regression calibration; and (2) a weighted corrected score method.
Both proposed approaches offer several advantages over existing methods in that they are
computationally efficient and are straightforward to implement. A simulation study was
conducted to evaluate the estimators’ finite sample performance. The proposed methods
are also applied on real data from a medical study and an ecological application.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Predictor variables (or covariates) are readily used for logistic regression models in a wide variety of applications, such
as: biostatistics, ecological and environmental sciences, engineering, epidemiology, finance, genomics, medical research
studies, public health, social sciences, etc. A typical example is seen in medical studies, where the response variable is
some binary outcome (e.g., does a patient have diabetes), and the predictor variables are usually recorded characteristics,
attributes or measurements taken on patients (e.g., age or recorded body mass index values). Usually, the objective is to
understand the nature of the relationship between the response and predictor variables. If the observed predictor variables
are measured with error, i.e., they are measured imprecisely, then there may be a loss of statistical power, substantial bias
in parameters estimates and loss of features (also referred to as the ‘‘triple whammy of measurement errors’’, Carroll et al.,
2006), which will subsequently result in invalid statistical inference in most regression analysis.

Numerous methods have been proposed to account for the measurement error in predictor variables, early work dates
back to the 1940 and 1950s—e.g., see Wald (1940) and Berkson (1950). To adjust for the bias inherent in the estimation
of the model parameters, several well-known methods have been developed, these include: regression calibration (Carroll
et al., 2006, Section 4), refined regression calibration (Wang, 2000), simulation extrapolation (SIMEX, Cook and Stefanski,
1994), conditional score (Stefanski and Carroll, 1987), corrected score (Stefanski, 1989; Nakamura, 1990), Bayesianmethods
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(Gustafson, 2003), Monte Carlo Expectation Maximization (MCEM, Wei and Tanner, 1990; Stoklosa et al., 2015) and many
others, see Carroll et al. (2006). Among these methods, the conditional score approach is shown to be locally efficient
(Stefanski and Carroll, 1987) but it is not applicable for regression models with a quadratic term, whereas the refined
regression approach is easy to implement and gives satisfactory outcomes in general and practical situations (Liang and
Liu, 1991; Wang, 2000).

We are motivated by two data sets consisting of imprecisely measured covariates. The first data set was collected on
diabetics in Taiwan in 2005. These survey data were obtained by the National Health Research Institute of Taiwan. Of
particular interest is understanding how the incidence of diabetes relates to a patients’ characteristics, attributes or some
recorded body measurement. Huang et al. (2015) previously analysed these data using body mass index (kg/m2) and age of
patients as two predictor variables. The bodymass index data were collected by self-report (where the measurements were
collected from a questionnaire) and thus contained some information on the uncertainty associatedwith themeasurements,
see Section 5.1 for further details. By fitting several logistic regressionmeasurement error models, Huang et al. (2015) found
that agewas not significant in their analysis, however a quadraticmodel (i.e., using both linear and squared bodymass index
terms) fits the data well—suggesting that some non-linearity between the response and the linear predictor was evident.
We will return to this case study in Section 5.1.

Inmany ecological applications, it is also common to observe both: non-linearity between non-normal responses and the
linear predictor (Austin, 2007; Bolker, 2008); and error in variables (Hwang and Huang, 2003; Stoklosa et al., 2011; Xu and
Ma, 2014; Stoklosa et al., 2015). Thus, our second example focuses on an ecological study that uses capture–recapture data
collected from sub-adult/adult platypus Ornithorhynchus anatinus on Kangaroo Island, Australia. These data were previously
analysed in Furlan et al. (2012) where the estimation of capture probabilities and abundance of platypus was of interest.

With the exception of a semi-parametric efficient estimator proposed by Tsiatis and Ma (2004), the majority of
measurement error literature has been primarily developed for parametric general linear regression models with little
attention given to quadratic models; this study focuses on the latter. Importantly, methods such as regression calibration
or MCEM can incorporate quadratic structures however the distribution of the predictor variables is usually assumed to
be normal, which in practice can be quite restrictive. As an example, in Fig. 1 we present a qq-plot and histogram of the
self-reported bodymass index in the diabetes data described above. The actual distribution of the true covariate is of course
never known as it is masked by the measurement error, but it is evident that there is some right-skewness in the observed
covariate. If this measurement error were to follow a normal distribution (which to a good approximation usually holds in
practice, see Carroll et al., 2007), then it is evident that the true covariate is non-normally distributed. Assuming normality
when in fact the true covariate is non-normally distributed will lead to inconsistent estimates of model parameters (Carroll
et al., 2006).

To overcome this restriction, Tsiatis and Ma (2004) proposed a locally semi-parametric efficient estimator that provides
consistent estimates using a functional measurement error model—i.e., no distributional assumptions are made on the
true covariate, and the model remains flexible enough to handle non-linearity. However, their proposed method requires
solving an integral equation that is difficult to implement, especially in the multivariate predictor case. More recently,
Huang et al. (2015) developed a much simpler approach through an extensively corrected score method that is also able
to handle the quadratic logistic model, but this method requires error augmentations in computation and could encounter
divergent estimates if the measurement error is severe. Here, we further investigate the method of Huang et al. (2015) and
additionally propose two new approaches: (1) an approximated refined regression calibration; and (2) a weighted corrected
score method. Both methods are flexible and easier in computation whilst handling quadratic models with only minor bias
reported in the parameter estimates.

In Section 2 we give some notation and review several existing methods. We present the proposed approaches in
Section 3 and discuss an extension to binomial models in 3.3. We then investigate the finite sample performances for each
measurement error method (including the error-free case) using several simulation studies in Section 4, and in Section 5
we fit each method to real data using the two examples described above. We conclude with some further extensions and
discussion in Section 6.

2. Notation and a review of existing methods

For i = 1, . . . , n, let Yi be a random sample of independent binary response variables. Let Zi be a categorical covariate
and Xi be a continuous covariate. In what follows, and for the sake of simplicity, we assume that both Zi and Xi are univariate
(scalar) variables, nevertheless, all the methods presented in this study can be easily extended to the multivariate predictor
case. Suppose that the covariates Zi and Xi are given, then we have

P(Yi = 1 | Zi, Xi) = H(α1 + α2Zi + β1Xi + β2X2
i ), (1)

whereH(u) = {1+exp(−u)}−1 is the logistic function. Suppose that Xi is measuredwith additive random error andwe only
have the observed surrogate variableWi. We assume thatWi = Xi + ϵi for all i, where ϵi is the measurement error which is
stochastically independent of any other covariates and the response variable. Suppose that ϵi is normally distributed with
mean 0 and variance σ 2, denoted by ϵi ∼ N(0, σ 2). We also assume that the measurement error variance σ 2 is known. In
practice, the measurement error variance can be estimated from replicate surrogate measurements Wi or validation data
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