
Computational Statistics and Data Analysis 95 (2016) 122–132

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Confidence intervals for the ratio of two Poisson rates under
one-way differential misclassification using double sampling
David J. Kahle a,∗, Phil D. Young a,b, Brandi A. Greer a, Dean M. Young a

a Department of Statistical Science, Baylor University, Waco, TX 76798-7140, United States
b Department of Information Systems, Baylor University, Waco, TX, 76798-7140, United States

a r t i c l e i n f o

Article history:
Received 25 February 2015
Received in revised form 9 September 2015
Accepted 9 September 2015
Available online 8 October 2015

Keywords:
Poisson rates
Differential misclassification
Double-sampling
Under-reporting
R

a b s t r a c t

Wald, profile likelihood, and marginal likelihood confidence intervals are derived for the
ratio of two Poisson rates in the presence of one-way differentially misclassified data us-
ing double sampling. Monte Carlo simulations demonstrate the reliability and relative
performance of the intervals, and an example from cancer epidemiology illustrates their
application and interpretation in a real-world scenario. All of the methods described are
implemented and freely available in the R package poisDoubleSamp on the Comprehen-
sive R Archive Network (CRAN).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When analyzing prevalence rates of a disease across two groups of subjects, differential misclassification refers to the
systematic mislabeling of the disease for an alternative at different rates depending on group membership (Gordis, 2014).
Such misclassification is an obvious source of information bias with the potential to mask effects of interest relating to
the two groups. Consequently, methods that mitigate against such errors are preferable, when available, because they can
provide more reliable conclusions. Unfortunately such methods are not as pervasive as one might hope. In this article we
consider one-way differential misclassification; that is, we consider the scenario in which the disease of interest is at risk of
being misclassified as another ailment, while other ailments are not at risk for being misclassified as the disease of interest.

Double-sampling is often applied to collect count data over a vast observation-opportunity size and is beneficial because
it can be utilized to significantly reduce bias in situations of misclassification. Hiridoglou and Sarndal (1998) and Hiridoglou
(2001) have provided well-rounded introductions to the theory behind double-sampling, while Chanu and Singh (2014),
Choudhury and Singh (2012), and Vishwakarma and Gangele (2014) are among the many who have investigated various
aspects of the paradigmwithin the last few years. A frequently usedmethod for comparing two Poisson rates is to determine
and analyze the ratio of the rates. Recently, Gu et al. (2008), Feng et al. (2009), Laurent (2012), Barker and Cadwell (2008),
and Sahai and Khurshid (1993) have been among the many who have embraced this method of comparison. In this article
we combine the two strategies by employing a double-sampling procedure with count data to determine Wald, profile
likelihood, andmarginal likelihood confidence intervals (CIs) for the ratio of Poisson rate parameters for twopopulations. The
work described is implemented in the R package poisDoubleSamp, which is currently available through the Comprehensive
R Archive Network (CRAN), and examples are provided throughout to showcase how the theory can be brought to practice
(Kahle et al., 2015; R Core Team, 2014).
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Table 1
Notation for the Poisson rates used in the running example.

France Italy

Cervical cancer λ11 λ21
Cancer (other) λ12 λ22

Table 2
The two datasets as they are observed in practice.

(a) The fallible dataset (b) The infallible dataset
i = 1 i = 2 i = 1 i = 2

j = 1 z11 z21 j = 1 m011 m021
j = 2 z12 z22 j = 2 m012 m022

Under-reported y01 y02
Opportunity N1 N2 Opportunity N01 N02

Example. In our opinion the most efficient and effective way to communicate the topics discussed in this article is with
a running example. We describe the study generally in the following example, which we continue throughout the article.
Section 5 further explains the quantities referred to in the context of a real-world dataset.

Suppose we wish to compare the mortality rates of cervical cancer in France and Italy. To that end, we represent the
numbers of cervical cancer deaths in each country as Poisson variates with rates λ1 for French women and λ2 for Italian
women. Now, the possibility exists that womenwho succumbed to cervical cancer are reported as succumbing to a different
type of cancer. By aggregating these different types of cancer together as simply ‘‘Cancer (Other)’’, we can reasonably assume
that the sum total of other cancer deaths is also Poissonian. The four categories can therefore be represented with a 2 × 2
contingency table with a Poisson sampling scheme as in Table 1.

Note that the first index, i, corresponds to the population: France is i = 1 and Italy is i = 2. The second index, j,
corresponds to the cause of death: cervical cancer is j = 1 and cancer (other) is j = 2.

Whatmakes this problem interesting is themisclassification of patients that have succumbed to cervical cancer as having
succumbed to another type of cancer, thus creating under-reporting of cervical cancer deaths. We represent this aspect
of the problem with under-reporting parameters for each population, denoted θi, using a binomial model. Thus, θ1 and
θ2 denote the under-reporting proportions for French and Italian women, respectively. These rates and under-reporting
parameters occur over an observation-opportunity size denoted Ni so that the number of deaths in each case is modeled as
Pois(Niλij). ∥

We nowmore precisely and generically describe the data involved in such a study. The double-sampling scheme results
in two datasets from each population. The first dataset, called the fallible dataset, consists simply of a contingency table of
the observed death counts from both causes in both populations, see Table 2(a); it also contains the observation-opportunity
sizes from which the data were gathered. The dataset described in the example above was the fallible dataset. The second
dataset, called the infallible dataset, consists of a contingency table as before, but also includes the number of under-reported
deaths in each setting learned from a gold standard, see Table 2(b). This dataset is typically far smaller because the resources
required to obtain it are typically much larger.

The notation used to describe the data reflects the subtle nature of the problem, so a notational description is essential
before we proceed. We begin with components of the fallible dataset. Letmij denote the actual, but not the observed, count
from population i in category j. These counts are latent in the fallible dataset. Let yi denote the number of counts in group
1 of population imisclassified into group 2, and define zij to be the error-prone observed count. Using the previously stated
model assumptions, one can easily determine

[mij|Ni, λij] ∼ Pois(Niλij), (1)

[zi1|Ni, λi1, θi] ∼ Pois(Niλi1 (1 − θi)), , (2)
[zi2|Ni, λi1, λi2, θi] ∼ Pois(Ni(λi2 + λi1θi)), (3)

and

[yi|mi1, θi] ∼ Bin(mi1, θi). (4)

The notation used for the infallible dataset is the same as that of the fallible dataset, save for a ‘‘0’’ prepended to the index.
As a visual reference, a graphical model diagram for the model is included in Fig. 1.

Example (continued). Continuing our example, we have that m11 and m12 reflect the actual number of French women that
died from cervical cancer and other types of cancer in the fallible dataset; m21 and m22 indicate similar counts for Italian
women. The under-reported counts, also latent, are denoted yi, where y1 and y2 denote the number of misclassified French
and Italian women, respectively, who died because of cervical cancer but were classified as having died from other causes.
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