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a b s t r a c t

In studies involving nonparametric testing of the equality of two or more survival distri-
butions, the survival curves can exhibit a wide variety of behaviors such as proportional
hazards, early/late differences, and crossing hazards. As alternatives to the classical logrank
test, the weighted Kaplan–Meier (WKM) type statistic and their variations were developed
to handle these situations. However, their applicability is limited to cases where the popu-
lationmembership is available for all observations, including the right censored ones. Quite
often, failure time data are confronted with missing populationmarks for the censored ob-
servations. To alleviate this, a new WKM-type test is introduced based on imputed popu-
lation marks for the censored observations leading to fractional at-risk sets that estimate
the underlying risk for the process. The asymptotic normality of the proposed test under
the null hypothesis is established, and the finite sample properties in terms of empirical
size and power are studied through a simulation study. Finally, the new test is applied on
a study of subjects undergoing bone marrow transplantation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In medical and epidemiological follow-up studies, testing equality of two (or more) survival curves is a commonplace in
understanding the effectiveness of treatment or exposure on the corresponding populations. Under the basic assumption of
independent samples from two or more populations (including those whose failure times are right-censored), one resorts
to the usual rank-based tests, which encompass the logrank (LR) (Mantel, 1966; Cox, 1972; Tarone and Ware, 1977), and
the generalized Wilcoxon (Gehan, 1965; Breslow, 1970; Peto and Peto, 1972) statistics, or a Cox’s regression (Klein and
Moeschberger, 2003). In a typical competing risk framework where a subject in a healthy state may die due to one of J
different risks, one might be interested in comparing the sub-populations (Bandyopadhyay and Datta, 2008) corresponding
to the different death types. For example, targeted cancer therapies and vaccine trials devised to reduce the hazard of a
specific disease mortality are not expected to affect the mortality from other causes or diseases, so the survival of the
individuals dying from that specific disease is expected to be higher than those failing from other causes. However, the
setup is complicated by the fact that themarks indicating the cause of death remain unavailable for subjects whowere right
censored, say, remaining alive at study completion. The cause of death can only be found (via. autopsy or otherwise) after
the subject actually dies. In addition to the right censored subjects, determination of the cause of deathmight be prohibitive
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for some subjects, thereby contributing to missing marks (Andersen et al., 1996). Removing those incomplete observations
wouldmaintain the correct size in the resulting test, howevermay lead to a loss of power (Bandyopadhyay and Datta, 2008).

Under a competing risk (or multistate) framework, there is a thick body of literature that focuses on estimation of
certain (survival) quantities of interest, such as cause-specific hazard (CSH), cumulative incidence function (CIF), as well
as regression functions. One of the basic assumptions here is that each subject is clearly identified to belong to one of
the independent populations under consideration, including the right-censored ones. Hence, these functions may not be
appropriate for summary probabilities of these competing causes. For example, in any clinical trial of a particular cancer
type, the patients may die either out of the cancer or other causes, with a proportion experiencing censoring, say at study
completion. The CIF can estimate the chance of a random patient dying due to the cancer before a pre-specified age, say 60.
However, it does not answer the question: ‘Among all patients dying due to the cancer (which also includes a proportion of
the censored patients eventually experiencing cancer death), what is the probability that a random patient will die before
age 60?’. Hence, the correct quantity to estimate and subject to hypothesis testing in this case is the conditional survival
function, conditional on the cause of failure (Bandyopadhyay and Jácome, 2010). For this, the study subjects/individuals
need to be split into J sub-populations, according to their eventual cause of failure. A more formal definition of this problem
is available in Section 2.

Under missing population marks, a limited number of papers have dealt with this two-sample problem. Goetghebeur
and Ryan (1990) derived a modified logrank test for a two-group comparison problem, while Dewanji (1992) provided
a modification to that approach. Using a partial likelihood constructed under semiparametric assumptions, Goetghebeur
and Ryan (1995) proposed a score test. Tsiatis et al. (2002) studied a combined logrank test assuming a logistic model
for the conditional probability of dying out of the cause of interest and multiple imputation techniques (see e.g. Rubin,
1987) to impute missing causes of failure. The aforementioned approaches are based on several parametric assumptions,
and therefore there is a clear risk of misspecification of the parametric model. More recently, Bandyopadhyay and Datta
(2008) proposed a nonparametric weighted logrank (WLR)-type test for testing conditional survival functions, adapted to
the missing population marks setup. Their approach is based on the fractional risks sets (FRS) proposition. The idea of FRS is
to assign fractional probability masses to the censored observations (that has missing population marks) that represent the
probability of belonging to each sub-population. That estimate is computed using the nonparametric maximum-likelihood
estimator (NLMLE) of the transition probability (further details appear in Section 2). Bandyopadhyay and Datta (2008)
showed that the performance of their WLR-FRS test is comparable to the classical WLR test when the population marks are
known; however, for missing population marks, the WLR-FRS test outperforms the classical WLR test applied by throwing
away the censored observations, while maintaining the size under the null.

The WLR test (both the classical and the FRS versions) is inarguably the most efficient test under the local alternative of
proportional hazards (PH) among the two survival functions under comparison. However, it is not always sensitive to the
stochastic ordering alternatives, particularly for crossing hazards. In practice, the assumption of a PH between the study
and the control groups is unlikely to be true. For example, in surgical interventions, treated patients usually show less
favorable short-term results versus placebo but far better long-term results; in the comparison of high/low doses in cancer
chemotherapy, high dose may be ineffective initially, but produces favorable long-term results; or in cancer screening trials
during a long follow-up period, variations can affect the shape of the observed differences between control and intervention
groups (Shapiro et al., 1988). Considering these disadvantages of the WLR test, Pepe and Fleming (1989) introduced the
weighted Kaplan–Meier (WKM) statistics as an alternative to the rank-based methods. The WKM test is based on the
integrated weighted differences of the Kaplan–Meier (Kaplan and Meier, 1958) estimators of the corresponding survival
curves. These WKM statistics are more sensitive to the magnitude of the survival differences than the rank-based tests,
compare extremely well with the WLR test, and may perform far better than the WLR test under the crossing hazard
alternatives. The asymptotic properties of the WKM test can be found in Pepe and Fleming (1991), and some extensions
of the WKM test have been investigated by many authors, including Murray (2001), Shen and Cai (2001), Chi (2005), Lee
et al. (2008) and (Lee, 2011), among others.

In order to alleviate the drawbacks of the WLR tests (both classical and FRS), this paper applies the FRS technique to the
WKM test to accommodate missing causes of failure. Thus, the additional contribution is construction of a test where the
WLR-FRS test of Bandyopadhyay andDatta (2008) becomes inefficient. The remainder of the paper is organized as follows. In
Section 2, the newWKM-FRS test is introduced, and its asymptotic properties are studied. The finite sample performance of
the test are explored and compared to theWLR-FRS test in terms of size and power for a variety of alternatives in Section 3.
In Section 4, the proposed test is applied to a real dataset on patients undergoing bone marrow transplantation (BMT).
Finally, some concluding comments are presented in Section 5 followed by an Appendix containing proofs of the theorems
introduced in Section 2.

2. The WKM-FRS test

2.1. Background and notation

Consider a simple competing risks framework where a set of n subjects are exposed to J = 2 competing causes of
failure/death, and let Lj, j = 1, 2 represent their (latent) failure times, that is, the potential survival times in hypothetical
conditions where the only possible risk is the jth cause. Assuming no censoring, the observable random variables are (T , X),
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