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a b s t r a c t

Robust selection of variables in a linear regression model is investigated. Many variable
selection methods are available, but very few methods are designed to avoid sensitivity to
vertical outliers aswell as to leverage points. The nonnegative garrotemethod is a powerful
variable selection method, developed originally for linear regression but recently success-
fully extended to more complex regression models. The method has good performances
and its theoretical properties have been established. The aim is to robustify the nonnega-
tive garrote method for linear regression as to make it robust to vertical outliers and lever-
age points. Several approaches are discussed, and recommendations towards a final good
performing robust nonnegative garrote method are given. The proposed method is eval-
uated via a simulation study that also includes a comparison with existing methods. The
method performs very well, and often outperforms existing methods. A real data applica-
tion illustrates the use of the method in practice.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Variable selection has become a key issue in applied data analysis, since often many variables are measured. However,
models including all the covariates are difficult to interpret and irrelevant variables increase the variance. Consider, for
example, data of 60U.S. StandardMetropolitan Statistical Areas, collected by researchers at GeneralMotors to studywhether
air pollution contributes to mortality. The response is age adjusted mortality and the 14 covariates measure demographic
characteristics of the cities, climate characteristics and the pollution potential of three air pollutants, namely hydrocarbon,
nitrous oxide and sulfur dioxide. Our interest is to find out which of the many characteristics influence mortality and in
particular, whether air pollution is significantly related to mortality. See further Section 6.

In the literature, different variable selection methods are proposed for multiple linear regression models

Yi =

p
j=1

Xijβj + ϵi,

with

Yi, Xi1, . . . , Xip


, i = 1, . . . , n, i.i.d. observations from


Y , X1, . . . , Xp


, satisfying themodel Y =

p
j=1 Xjβj + ϵ, where

Y is the response, X1, . . . , Xp are the p covariates, and ϵ is the error term with mean 0 and variance σ 2. We denote
Xi = (Xi1, . . . , Xip)

′, for i = 1, . . . , n, with A′ denoting the transpose of a matrix or vector A.
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One approach for variable selection is least angle regression (LARS, Efron et al., 2004): this method sequences the
candidate predictors in order of importance. Another approach is to add a penalty term nλ

p
j=1 g(βj) to the objective

function of least squares regression to enforce sparsity of themodel. For example, the Least Absolute Shrinkage and Selection
Operator (LASSO, Tibshirani, 1996) and Bridge (Frank and Friedman, 1993; Fu, 1998) have an Lq-type of penalty on the
regression coefficients, i.e. g(θ) = |θ |

q, with q = 1 and q < 1 respectively. Fan and Li (2001) use another penalty function,
namely the Smoothly Clipped Absolute Deviation (SCAD) penalty. This penalty function gλ(|·|) = λg(|·|) satisfies gλ(0) = 0
and has the first-order derivative

g ′

λ(θ) = λ


I(θ ≤ λ) +

(aλ − θ)+

(a − 1)λ
I(θ > λ)


,

for some a > 2 and θ > 0. The nonnegative garrote (Breiman, 1995) uses a penalty on shrinkage factors of the regression
coefficients. This method starts from an initial estimator, the ordinary least squares estimator (OLS), and then it shrinks or
puts some coefficients of the OLS equal to zero using the nonnegative garrote shrinkage factors. Let βOLS

j denote the OLS
estimator of the coefficient βj, then the nonnegative garrote shrinkage factorsc =

c1, . . . ,cp′ are found by solvingc = argmin
c

 1
2n

n
i=1


Yi −

p
j=1

cjβOLS
j Xij

2

+ λ

p
j=1

cj


s.t. 0 ≤ cj (j = 1, . . . , p),

(1)

for given λ > 0. Breiman (1995) recommends to choose the regularization parameter λ with five fold cross-validation. The
nonnegative garrote estimator of the coefficient βj, j = 1, . . . , p, is then given byβNNG

j =cjβOLS
j .

However, none of these variable selection methods are robust to outliers. Robust versions of the LARS, LASSO and SCAD
methods have been considered in the literature. Khan et al. (2007) proposed a robust version of LARS (called RLARS) by
replacing the mean, variance and correlation by their robust counterparts to sequence and select the important covariates.
A robust regression estimator is then applied to the selected covariates. See also Agostinelli and Salibian-Barrera (2010).
Different robust versions of the LASSO have been developed in the literature. See for example Owen (2006). The LAD-LASSO
of Wang et al. (2007) is a penalized least absolute deviation estimator, but this method is not robust to leverage points.
To overcome this drawback, Arslan (2012) proposed the WLAD-LASSO. In this method the LAD-LASSO is applied to the
transformed data set


wiYi, wiXi1, . . . , wiXip


, i = 1, . . . , n, where the weights wi are computed using robust distances.

The Sparse LTS of Alfons et al. (2013) is a trimmed version of the LASSO and is also robust with respect to vertical outliers
and leverage points. A robust version of the SCAD is obtained by Wang and Li (2009) and Wang et al. (2013) proposed
penalized robust regression estimators based on the exponential squared loss function, where the penalty function can be
of any type.

During the review process of this paper, our attention was drawn to a technical report of Medina and Ronchetti (2014).
This paper deals with robust and consistent variable selection for generalized linear and additive models, using as a basis
the nonnegative garrote method. In the framework of these models one assumes that the error distribution belongs to the
exponential family. Medina and Ronchetti (2014) rely on a quasi-likelihood quantity that is robustified by using a Huber
function, and by introducing a weight function (depending on the covariates) that could possibly deal with bad leverage
points. The choice of the weight function needs to be made in some way; in their simulation study the authors take this
function to be the identity function.

In this paperwe consider a linear regressionmodelwithunspecified error distribution. Unlike the LARS, the LASSOand the
Bridge, the standard nonnegative garrote method (i.e. in case a least squares estimator is used as an initial estimator) is not
directly applicable to high-dimensional data (i.e. the case that p is much larger than n).When an initial estimator is used that
can dealwith the high-dimensional case, this disadvantage is also resolved. SeeMedina andRonchetti (2014). The theoretical
properties of the nonnegative garrotte method are well studied in the literature (Yuan and Lin, 2007) and are extended for
variable selection in additive regression models and varying coefficient models by Antoniadis et al. (2012a,b). Extensive
simulation studies in these papers, including comparisons with among others the LASSO and SCAD methods, revealed that
the nonnegative garrote method overall performs quite well. We therefore, in this paper, robustify the nonnegative garrote
for outliers in the response and in the covariates by using robust alternatives to the least squares regression estimator,
such as the S-estimator (Rousseeuw and Yohai, 1984) and the least trimmed squares (LTS) estimator (Rousseeuw, 1984).
We also develop a reweighting step that is related with the MM-estimator of Yohai (1987), to increase the efficiency of the
proposed robust nonnegative garrote method under the normal error model. Our study indicates that a carefully designed
robust nonnegative garrote method performs quite well and often outperforms other available methods. This paper thus
contributes in a thorough study of the different approaches to robustify the nonnegative garrote method (on all levels of the
estimation procedure) for linear regression models.

The rest of the paper is organized as follows. In Section 2, we present three robust versions of the nonnegative garrote,
namely the M-, S- and LTS-nonnegative garrote. In Section 3, we give a first simulation study to compare these proposed
methods. In Section 4 an extra reweighting step is proposed to improve the results of the S-nonnegative garrote. Section 5
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