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h i g h l i g h t s

• Sample size methods and programs for reliability studies are developed.
• The two-way balanced analysis of variance model without interaction is the focus.
• The sample size guarantees a user-specified mean confidence interval width.
• Modified large sample and generalized confidence interval methods are used.
• Novel computational algorithms are developed, studied, and implemented.
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a b s t r a c t

The intraclass correlation coefficient (ICC) in a two-way analysis of variance is a ratio
involving three variance components. Two recently developed methods for constructing
confidence intervals (CI’s) for the ICC are the Generalized Confidence Interval (GCI) and
Modified Large Sample (MLS) methods. The resulting intervals have been shown to main-
tain nominal coverage. But methods for determining sample size for GCI andMLS intervals
are lacking. Sample size methods that guarantee control of the mean width for GCI and
MLS intervals are developed. In the process, two variance reductionmethods are employed,
called dependent conditioning and inverse Rao-Blackwellization. Asymptotic results pro-
vide lower bounds for mean CI widths, and show that MLS and GCI widths are asymptot-
ically equivalent. Simulation studies are used to investigate the new methods. A real data
example is used and application issues discussed. The new methods are shown to result
in adequate sample size estimates, the asymptotic estimates are accurate, and the variance
reduction techniques are effective. A sample size program is developed.1 Future extensions
of these results are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The two-way crossed analysis of variance layout is commonly encountered in psychometry (McGraw and Wong, 1996),
radiology (Belge et al., 2006; Hing et al., 2007), inter-rater reliability studies (Potempa et al., 1995; Eliasziw et al., 1994),
assay reproducibility studies (McShane et al., 2000; Dobbin et al., 2005), and gauge repeatability and reproducibility
studies (Burdick et al., 2005). The intra-class correlation coefficient (denoted ICCb below) represents agreement between

∗ Corresponding author.
E-mail address: dobbinke@uga.edu (K.K. Dobbin).

1 R program can be downloaded at http://dobbinuga.com.
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laboratories, raters, or instruments in this layout, depending on the context. The ICCb is a function of three variance
components. A common goal of inter-rater reliability studies is to construct a confidence interval for the ICCb. But traditional
interval methods based on maximum likelihood asymptotics perform poorly (for examples of this poor performance,
see supplement (Appendix B) and (Cappelleri and Ting, 2003)). As a result, both Modified Large Sample (MLS) interval
(Cappelleri and Ting, 2003) and Generalized Confidence Interval (GCI) (Weerahandi, 1993; Burdick et al., 2005) methods
were developed. MLS and GCI provide nominal coverage for the ICCb (Cappelleri and Ting, 2003), (Ionan et al., 2014). But,
no methods currently exist for determining the sample size required to construct GCI or MLS intervals in this layout.

The GCI and MLS intervals are constructed using exact statistical methods (Weerahandi, 1995). Sample sizes for
confidence intervals based on exact methods have been developed for some important contexts (Bonett, 2002; Zou, 2012),
but not the one addressed in this paper. Bonett (2002) developed a sample size method for the intraclass correlation
coefficient for settings in which the ICC is a function of two variance components. None of the models in Bonett (2002)
match the setting addressed in this paper. Also, Bonett’s approach cannot be adopted to this setting because it is based on
an asymptotic approximation to the variance of the ICC estimate. But no adequate approximation to this variance is available
for the setting studied in this paper. Moreover, the MLS and GCI methods, since they do not use such a variance estimate in
their construction (that is, they are based on exact calculations), may have widths unrelated to this variance. Nor can the
MLS or GCI widths be expressed algebraically as simple functions of the sample size. Turning to the work of Zou (2012), he
addressed the important setting of a one-way layout; the approach used an estimate of the width of the Wald interval for
the sample size calculations. Zou also interestingly controlled the probability that the width is below a bound, rather than
the expected width. Zou’s Wald interval approximation approach is not well suited to the context addressed in this paper
because the ICCb estimator in the two-way layout is often highly skewed, the asymptotic convergence in this context is slow,
and Wald intervals do not perform well in this setting.

The ICCb in a two-way analysis of variance layout without interaction was discussed in McGraw and Wong (1996) and
studied in Saito et al. (2006). McGraw and Wong (1996) did not give sample size formulas; they provided formulas for the
lower and upper bounds of a confidence interval (their Table 7, Case 2A); in that context, the ICCb is called the ‘‘degree
of absolute agreement among measurements’’, the ‘‘criterion-referenced reliability’’, or the ‘‘Type I ICC’’. Importantly, the
formulas from Table 7 in McGraw and Wong for the specific setting ICC(A, 1) and case 2A, which were taken from Shrout
and Fleiss (1979) and developed by Haggard (1958) in 1958, only work well when the degrees of freedom for each mean
square is large (Montgomery, 2013, p. 600; Cappelleri and Ting, 2003; Ionan et al., 2014). The MLS and GCI methods studied
in this paper, on the other hand, work well even if the degrees of freedom for one or more mean squares are small; thus
the MLS and GCI are more robust and appropriate to use for sample size estimation. Saito et al. (2006) studied different
experimental designs for thismodelwhen r0 = 1. To compare the efficiency of different designs, they used an approximation
to Var(Ln(ICCb)) based on the deltamethod (that is, a Taylor series expansion). But since the GCI andMLSmethods are based
on exact calculations, their widths may not be related to the efficiencies (or standard errors) of the point estimates. At one
point in their discussion, Saito et al. (2006) did use exactmethods to construct the intervals and comparewidths (their Table
III), but strictly in a limited context of comparing optimal allocation patterns, not sample size estimation. Since the primary
objective of the 2006 paper was to compare designs, they did not present an explicit sample size method as we do here, or a
set of tools for determining sample size for specific settings. In our study, we also allow r0 ≥ 1 because this is a reasonable
design in some cases and is not uncommon in biomarker studies (MAQC Consortium, 2006; Dobbin et al., 2005; Polley et al.,
2013; McShane et al., 2000).

The sample size estimates produced by our method ensure that the mean confidence interval width is below a
user-specified target width. Ideally, one may wish to control the actual width of an interval to be below a target, rather
than the mean width. But the actual width of both the GCI and MLS intervals are functions of the observed mean squares;
since the observed mean squares are unknown at the study design phase, it is not feasible to control the actual interval
width itself. One approach might be to ‘‘plug in’’ estimates of the values of these variance components that will be observed
when the experiment is run. But such an approximation approach seems suboptimal since it leaves open the question of the
sensitivity of the approximation to mis-specification of the variance component values that will be observed. Controlling
the expected widths as we do in this paper averages over the observed values of mean squares. This averaging requires
integrating the unobserved mean squares out of the width formulas. For both the MLS and GCI, this results in complex
multiple integrations without clean analytic solutions. A variety of statistical computation methods are employed to make
the integrations computationally tractable.

Statistical computation methods are reviewed in Robert and Casella (2013). As shown below, classic Monte Carlo
integration is inadequate for sample size determination because of the computational demands. For the GCI sample size
method, importance sampling (Ripley, 2006) was investigated but produced relatively minor computational gains. The
method of Rao-Blackwellization (Robert and Casella, 2013), which involves conditioning on variables so as to reduce the
variance, produced substantial variance reduction for estimates of the cumulative distribution function. We modified
this method and call the resulting procedure inverse Rao-Blackwellization. Control variates (Rothery, 1982) are another
widely used variance reduction technique. They depend on identification of an effective control variate. By investigation
we identified a control variate for the ICCb. For the MLS procedure, we find that the ICCb width – which is initially a
function of three variance components – can be rewritten as a function of two dependent F distributions. Subsequently,
using mathematical manipulations we develop a method which we call ‘‘dependent conditioning’’. This method is closely
related to two-stage Gibbs sampling (e.g., Robert and Casella, 2013). Gibbs sampling requires assessment of the convergence
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