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a b s t r a c t

Statistical extreme value theory is concerned with the use of asymptotically motivated
models to describe the extremevalues of a process. A number of commonly usedmodels are
valid for observed data that exceed some high threshold. However, in practice a suitable
threshold is unknown and must be determined for each analysis. While there are many
threshold selection methods for univariate extremes, there are relatively few that can
be applied in the multivariate setting. In addition, there are only a few Bayesian-based
methods, which are naturally attractive in the modelling of extremes due to data scarcity.
The use of Bayesian measures of surprise to determine suitable thresholds for extreme
value models is proposed. Such measures quantify the level of support for the proposed
extremal model and threshold, without the need to specify any model alternatives. This
approach is easily implemented for both univariate and multivariate extremes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extreme value theory is often used for the modelling of rare events in many applied areas, including finance (Embrechts
et al., 2003), engineering (Castillo et al., 2004) and the environmental sciences (Coles, 2001). Commonly, a mathematically
derived parametric extreme value model is used to describe the tail of the data generation process above some high
threshold.

In the univariate case, the generalised Pareto distribution provides a suitable model for the analysis of threshold ex-
ceedances, under mild conditions (Pickands, 1975; Balkema and de Haan, 1974; Davison and Smith, 1990). Specifically, if
X1, X2, . . . ∈ R denote a sequence of independent and identically distributed random variables, then the asymptotic distri-
bution of the exceedances, Y = X − u|X > u, of some high threshold u is given by

F(y|ξ, σ , u) = 1 −


1 +

ξ(y − u)
σ

−1/ξ

+

, (1)

where [a]+ = max{0, a}, and σ > 0 and −∞ < ξ < ∞ denote scale and shape parameters. The generalised Pareto model
(1) holds as u → ∞, and so in practice a suitable choice of threshold is the smallest value, u, such that F approximates the
tail of the observed data sufficiently well.
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In the multivariate setting, a standard representation is given in terms of a limiting Poisson process (de Haan, 1985;
Resnick, 1987). If Z1, . . . , Zn ∈ Rd are an independent and identically distributed sequence of random vectors with unit
Fréchet margins (i.e. with distribution function exp(−1/z), for z > 0), then the sequence of point processes Pn = {Zi/n :

i = 1, . . . , n} on [0, ∞)d converges to a non-homogeneous Poisson process Pn → P on [0, ∞)d \ {0} as n → ∞ (de Haan,
1985). The intensity function of P has the form

ν(dz) =
dr
r2

H(dw), (2)

where (r, w) denotes the pseudopolar co-ordinates r =
1
d

d
i=1 Z

i and w = Z/r (where Z = (Z1, . . . , Zd) ∈ Rd), and
H is a measure function defined on the unit simplex which represents the multivariate dependence structure. As with the
univariate case the above Poisson process holds asymptotically, and so in practice (that is, for finite n) it is assumed to hold
approximately on regions bounded away from the origin. In this case, the Poisson process with intensity function (2) may
be fitted to those observations (r, w)|r > r0 for which r exceeds some high threshold, r0. As before, a suitable choice of
threshold is the smallest value, r0, such that the above Poisson process approximates the multivariate tails of the observed
data sufficiently well (e.g. Coles and Tawn, 1991).

In both univariate and multivariate settings, the choice of a suitable threshold (u or r0) is problem dependent. As such,
a number of approaches have been proposed, primarily for the univariate case, that either offer diagnostics for threshold
choice or estimate the threshold as part of the model fitting procedure. A comprehensive review of these methods for the
choice of u is given by Scarrott and MacDonald (2012), who loosely characterise the techniques into several categories.

Classical fixed threshold approaches use graphical or other diagnostics tomake an assessment of themodel fit, in order to
make an a priori threshold choice. These include e.g. mean residual life plots, threshold stability plots, Hill plots and general
distribution fit diagnostics (e.g. Davison and Smith, 1990; Beirlant et al., 1996; Dupuis, 1998; Drees et al., 2000; Coles,
2001; Choulakian and Stephens, 2001). Disadvantages to these approaches are that graphical diagnostics are sometimes
difficult to correctly interpret, and that the uncertainty associated with the threshold, u, is not well accounted for in the
frequentist framework although see Cabras and Castellanos (2009b) who develop a Bayesian mean residual life plot. Some
methods that have been proposed to informally overcome these problems include tail fraction estimation (Drees et al.,
2000; Dekkers, 1993; Feuerverger and Hall, 1999; Goegebeur et al., 2008) and resampling-based approaches (Danielsson
et al., 2001; Ferreira et al., 2003; Beirlant et al., 1996; Drees and Kaufmann, 1998).

Rather than making an a priori threshold choice, several Bayesian mixture models have been proposed which treat the
threshold as an unknown parameter to be estimated. The mixture components themselves correspond to the generalised
Paretomodel aboveu, and parametric or semi-/non-parametric estimators of the bulk of the distribution below the threshold
(Frigessi et al., 2003; Behrens et al., 2004; Tancredi et al., 2006; Cabras and Morales, 2007; Cabras and Castellanos, 2011;
MacDonald et al., 2011b). These approaches are attractive as they both incorporate threshold uncertainty in the analysis,
and also remove the need tomake a subjective decision on the value of a fixed threshold. Disadvantages of these approaches
are the need to correctly balance the relative influence of the bulk and Paretomixture components so that neither dominate
(MacDonald et al., 2011a), and that it would appear difficult to extend them to the multivariate setting.

All of the above approaches concern the Pareto threshold, u, for univariate extremes. There are virtually no diagnostics to
determine the threshold, r0, for multivariate extremes models. However, noting that the intensity measure (2) is expected
to factorise into independent components involving angular (w) and radial (r) components when r > r0, in principle diag-
nostics may be constructed by determining the smallest value of r0, such that r|r > r0 and w|r > r0 exhibit independence.
Intuitively, this is easiest to achieve for bivariate extremes, so that bothw and r are univariate,whereby empirical histograms
of w|r > r0 should visually retain the same shape for r > r0 (e.g. Joe et al., 1992; Coles and Tawn, 1994).

In this article we propose a new Bayesian diagnostic for threshold choice for extremal models based on the idea of
‘‘surprise’’ (Meng, 1994; Bayarri and Morales, 2003; Bayarri and Berger, 1998; Cabras and Morales, 2007). Measures of
surprise quantify the degree of incompatibility of observed data with a given model, commonly through various (Bayesian)
predictive p-values using appropriate test statistics, but without any reference to alternative models. In terms of threshold
identification, suchmeasures would enumerate the extent to which observed data exceeding a candidate threshold (u or r0)
are compatible with the asymptotic Pareto or point process model. The smallest threshold values that are not incompatible
with the data are then natural candidates for the selected threshold.

Unlike many existing threshold choice methods, as predictive p-values have a natural scale, these measures of surprise
allow direct comparison of competing threshold candidates (which have different amounts of data exceeding the threshold),
as they do not require any modelling of data below the threshold. Also unlike almost all existing methods, by construction,
this approach is equally applicable to both univariate and multivariate extremal models. Ultimately, the proposed surprise-
based approach will select a final fixed threshold, u or r0, for use in a subsequent analysis. As a result, threshold uncertainty
is not directly incorporated into this final analysis. However, the threshold selection procedure itself is fully Bayesian, and
the final choice of threshold can be made within a full Bayesian decision-theoretic framework.

The remainder of this article is organised as follows: Section 2 provides a brief introduction to measures of surprise and
various forms of predictive p-value, before describing the proposed threshold selection procedure. The performance of this
approach is evaluated through several simulated examples in Section 3, both univariate and multivariate, and compared
to existing approaches for threshold choice. In Section 4 we apply our procedure to several real examples that have been
previously analysed in the extremes literature. Finally, we conclude with a discussion.
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