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a b s t r a c t

The twomain algorithms that have been considered for fitting constrainedmarginalmodels
to discrete data, one based on Lagrangemultipliers and the other on a regressionmodel, are
studied in detail. It is shown that the updates produced by the two methods are identical,
but that the Lagrangian method is more efficient in the case of identically distributed
observations. A generalization is given of the regression algorithm for modelling the effect
of exogenous individual-level covariates, a context in which the use of the Lagrangian
algorithmwould be infeasible for evenmoderate sample sizes. An extension of themethod
to likelihood-based estimation under L1-penalties is also considered.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The application of marginal constraints tomulti-way contingency tables has beenmuch investigated in the last 20 years;
see, for example, McCullagh and Nelder (1989), Liang et al. (1992), Lang and Agresti (1994), Glonek and McCullagh (1995),
Agresti (2002), and Bergsma et al. (2009). Bergsma and Rudas (2002) introduced marginal log-linear parameters (MLLPs),
which generalize other discrete parameterizations including ordinary log-linear parameters and Glonek and McCullagh’s
multivariate logistic parameters. The flexibility of this family of parameterizations enables their application tomany popular
classes of conditional independence models, and especially to graphical models (Forcina et al., 2010; Rudas et al., 2010;
Evans and Richardson, in press). Bergsma and Rudas (2002) show that, under certain conditions, models defined by linear
constraints on MLLPs are curved exponential families. However, naïve algorithms for maximum likelihood estimation with
MLLPs face several challenges: in general, there are no closed form equations for computing rawprobabilities fromMLLPs, so
direct evaluation of the log-likelihood can be time consuming; in addition, MLLPs are not necessarily variation independent
and, as noted by Bartolucci et al. (2007), ordinary Newton–Raphson or Fisher scoring methods may become stuck by
producing updated estimates which are incompatible.

Lang (1996) and Bergsma (1997), amongst others, have tried to adapt a general algorithm introduced by Aitchison and
Silvey (1958) for constrained maximum likelihood estimation to the context of marginal models. In this paper, we provide
an explicit formulation of Aitchison and Silvey’s algorithm, and show that an alternativemethod due to Colombi and Forcina
(2001) is equivalent;we term this second approach the regression algorithm. Though the regression algorithm is less efficient,
we show that it can be extended to deal with individual-level covariates, a context in which Aitchison and Silvey’s approach
is infeasible, unless the sample size is very small. A variation of these algorithms, which can be used to fit marginal log-linear
models under L1-penalties, and therefore perform automatic model selection, is also given.

Section 2 reviews the marginal log-linear models and their basic properties, while in Section 3 we formulate the two
algorithms, show that they are equivalent and discuss their properties. In Section 4 we derive an extension of the regression
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algorithm which can incorporate the effect of individual-level covariates. Finally Section 5 considers similar methods for
L1-constrained estimation.

2. Notations and preliminary results

Let Xj, j = 1, . . . , d be categorical random variables taking values in {1, . . . , cj}. The joint distribution of X1, . . . , Xd is
determined by the vector of joint probabilities π of dimension t =

d
1 cj, whose entries correspond to cell probabilities,

and are assumed to be strictly positive; we take the entries of π to be in lexicographic order. Further, let y denote the vector
of cell frequencies with entries arranged in the same order as π. We write the multinomial log-likelihood in terms of the
canonical parameters as

l(θ) = y ′Gθ − n log[1t
′ exp(Gθ)]

(see, for example, Bartolucci et al., 2007, p. 699); here n is the sample size, 1t a vector of length t whose entries are all 1,
and G a t × (t − 1) full rank design matrix which determines the log-linear parameterization. The mapping between the
canonical parameters and the joint probabilities may be expressed as

log(π) = Gθ − 1t log[1t
′ exp(Gθ)] ⇔ θ = L log(π),

where L is a (t − 1) × t matrix of row contrasts and LG = It−1.
The score vector, s, and the expected information matrix, F , with respect to θ take the form

s = G ′(y − nπ) and F = nG ′ΩG;

here Ω = diag(π) − ππ′.

2.1. Marginal log-linear parameters

Marginal log-linear parameters (MLLPs) enable the simultaneous modelling of several marginal distributions (see, for
example, Bergsma et al., 2009, Chapters 2 and 4) and the specification of suitable conditional independenceswithinmarginal
distributions of interest (see Evans and Richardson, in press). In the following, let η denote an arbitrary vector of MLLPs; it
is well known that this can be written as

η = C log(Mπ),

where C is a suitable matrix of row contrasts, and M a matrix of 0’s and 1’s producing the appropriate margins (see, for
example, Bergsma et al. (2009, Section 2.3.4)).

Bergsma and Rudas (2002) have shown that, if a vector of MLLPs η is complete and hierarchical (two properties defined
below), models determined by linear restrictions on η are curved exponential families, and thus smooth. Like ordinary log-
linear parameters, MLLPs may be grouped into interaction terms involving a particular subset of variables; each interaction
term must be defined within a margin of which, it is a subset.

Definition 1. A vector of MLLPs η is called complete if every possible interaction is defined in precisely one margin.

Definition 2. A vector of MLLPs η is called hierarchical if there is a non-decreasing ordering of the margins of interest
M1, . . . ,Ms such that, for each j = 1, . . . s, no interaction term which is a subset ofMj is defined within a later margin.

3. Two algorithms for fitting marginal log-linear models

Here we describe the two main algorithms used for fitting models of the kind described above.

3.1. An adaptation of Aitchison and Silvey’s algorithm

Aitchison and Silvey (1958) studymaximum likelihood estimation under non-linear constraints in a very general context,
showing that, under certain conditions, the maximum likelihood estimates exist and are asymptotically normal; they also
outline an algorithm for computing those estimates. Suppose, we wish to maximize l(θ) subject to h(θ) = 0, a set of r
non-linear constraints, under the assumption that the second derivative of h(θ) exists and is bounded. Aitchison and Silvey
consider the stationary points of the function l(θ) + h(θ)′λ, where λ is a vector of Lagrange multipliers; this leads to the
system of equations

s(θ̂) + H(θ̂)λ̂ = 0

h(θ̂) = 0,
(1)

where θ̂ is theML estimate andH the derivative of h′ with respect to θ. Since these are non-linear equations, they suggest an
iterative algorithmwhich proceeds as follows: suppose that at the current iterationwe have θ0, a value reasonably close to θ̂.
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