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a b s t r a c t

Anewestimation procedure based on the composite quantile regression is proposed for the
semiparametric additive partial linearmodels, ofwhich the nonparametric components are
approximated by polynomial splines. The proposed estimationmethod can simultaneously
estimate both the parametric regression coefficients and nonparametric components
without any specification of the error distributions. The proposed estimation method
is empirically shown to be much more efficient than the popular least-squares-based
estimation method for non-normal random errors, especially for Cauchy error, and almost
as efficient for normal random errors. To achieve sparsity in high-dimensional and sparse
additive partial linearmodels, of which the number of linear covariates is much larger than
the sample size but that of significant covariates is small relative to the sample size, a
variable selection procedure based on adaptive Lasso is proposed to conduct estimation
and variable selection simultaneously. The procedure is shown to possess the oracle
property, and ismuch superior to the adaptive Lasso penalized least-squares-basedmethod
regardless of the random error distributions. In particular, two kinds of weights in the
penalty are considered, namely the composite quantile regression estimates and Lasso
penalized composite quantile regression estimates. Both types of weights perform very
well with the latter performing especially well in terms of precisely selecting significant
variables. The simulation results are consistent with the theoretical properties. A real data
example is used to illustrate the application of the proposed methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Additivemodels have been proven to be very useful since they not only naturally generalize the linear regressionmodels
but also successfully circumvent the so-called ‘curse of dimensionality’ in nonparametric regression (see, Breiman and
Friedman (1985) and Hastie and Tibshirani (1986, 1990)). Additive partial linear models (APLMs) can be considered as
a modification of additive models with a parametric (linear) part or as a nontrivial generalization of the linear model
with additive components. In other words, APLMs allow the response variable to depend linearly on some covariates
and nonlinearly on the remaining variables. Suppose that {(Xi, Zi, Yi) : i = 1, . . . , n} is an independent and identically
distributed (i.i.d.) sample from (X, Z, Y ), where Y is a response variable, X = (X1, . . . , Xd)

T is a d-dimensional covariate
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vector and Z = (Z1, . . . , Zp)T is another p-dimensional covariate vector. The semiparametric APLM is defined as follows:

Yi = XT
i α +

p
j=1

gj(Zij)+ εi, (1.1)

where Xi = (Xi1, Xi2, . . . , Xid)
T

∈ Rd, α = (α1, . . . , αd)
T is a vector of corresponding regression coefficients, Zi =

(Zi1, Zi2, . . . , Zip)T ∈ Rp with Zij being the jth component of Zi, gj’s are one-dimensional unknown smooth functions of
Zij, and Yi ∈ R. We assume that εi’s are i.i.d. random errors which are independent of (Xi, Zi)’s. To ensure identifiability of
the nonparametric functions, we assume that Egj(Zj) = 0 for j = 1, . . . , p.

For APLM estimation, one can consult Stone (1985) and Opsomer and Ruppert (1997) for backfitting algorithm, Fan et al.
(1998), Opsomer and Ruppert (1999) and Liang et al. (2008) for methods based on kernel regression, and Koenker (2011) for
quantile regression based method. However, all these methods are not able to estimate the parameters and nonparametric
components simultaneously, and the existing estimation methods are all based on least squares approach and the
assumptions that the error is normally distributed or has finite variance, which are not always true in most applications.

In this paper, we first propose to use polynomial splines to approximate the nonparametric components in model
(1.1). With this approximation, each nonparametric component is represented by a linear combination of spline basis
functions. Consequently, the estimation problem of model (1.1) becomes a problem of estimating the coefficients in the
linear combinations and the parameters and nonparametric components can thus be estimated simultaneously. Next,
we propose to apply the composite quantile regression (CQR) approach to estimate the coefficients due to its appealing
properties and performance (see, Zou and Yuan (2008)). It has been shown that the relative efficiency of the CQR estimator
to the least squares estimator is greater than 70% regardless of the error distribution. Moreover, the CQR estimator could
be much more efficient and sometimes arbitrarily more efficient than the least squares estimator for non-normal errors,
especially for Cauchy errors, and almost as efficient for normal errors (see, Guo et al. (2012)).

In practice, a large number of variables may be collected and some of them are insignificant and should be excluded from
the final model. There has been active methodological research in penalized methods for significant variable selection in
linear parametric models. Examples include the bridge regression (Frank and Friedman, 1993), the least absolute shrinkage
and selection operator (Lasso) (Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), the
elastic net penalty (Zou and Hastie, 2006) and the adaptive Lasso (Zou, 2006). However, variable selection in the linear
part of APLMs is much more difficult and challenging and scattered studies have been found in statistics literature. Liu
et al. (2011) proposed a SCAD penalized method based on spline approximation in APLMs. Wei (2012) proposed a two-
step adaptive group Lasso penalized method for group variable selection based on spline approximation. Marra and Wood
(2011) introduced two very simple but effective shrinkagemethods and an extension of the nonnegative garrote estimators
for the problem of variable selection within the class of generalized additive models. Du et al. (2012) introduced a penalty
that combines the adaptive empirical L2-norms of the nonparametric component functions and the SCAD penalty on the
coefficients in the parametric part to achieve simultaneous model selection for both nonparametric and parametric parts in
semiparametric regressionmodels with additive nonparametric components and high dimensional parametric components
under sparsity assumptions.

To select significant variables in the linear part of high-dimensional and sparse APLMs, we use the adaptive penalized
CQR approach by considering two kinds of weights in the penalty. The Type I weight is constructed using the corresponding
CQR estimates (which is similar to the idea proposed in Zou and Yuan (2008)) while the Type II weight is constructed using
the Lasso penalized CQR estimates,which has not been considered in literatures yet.We find that the adaptive penalized CQR
approach incorporated with the Type II weight performs extraordinarily well, especially in terms of precisely selecting the
significant variables. The proposed variable selection procedure enjoys the oracle properties andworks very well regardless
of the error distribution and choice of weight.

The rest of the paper is organized as follows. Section 2 studies the proposed estimation and variable selection procedures,
respectively, based on CQR of high-dimensional and sparse APLMs, and the theoretical properties of the estimators and the
oracle properties of the variable selection procedure are also presented. Numerical comparisons and simulation studies
are described in Section 3. Section 4 illustrates the application of the proposed methods with a real dataset. Proofs of the
technical results are presented in the Appendix.

2. Estimation and variable selection

2.1. Spline approximation and estimation

Suppose that each Zj takes values in a compact support [a, b], where a < b are finite numbers. Polynomial splines
are piecewise polynomials connected smoothly over a set of interior points or knots and we allow the number of knots
to increase with the sample size. For each 1 ≤ j ≤ p, let ξj = {a = ξj0 < ξj1 < · · · < ξjAj < ξAj+1 = b} be knot
sequences with Aj interior knots on [a, b]. For simplicity, we use the same knot sequence for all j = 1, . . . , p; that is,
ξ = {a = ξ0 < ξ1 < · · · < ξA < ξA+1 = b}. Here, [a, b] is divided into A + 1 subintervals IAt = [ξt , ξt+1), t = 0, . . . , A − 1
and IAA = [ξA, ξA+1], where A ≡ An = nv with 0 < v < 0.5 is a positive integer such that max1≤k≤A+1 |ξk − ξk−1| = O(n−v)
(see, Huang et al. (2010)).
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