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a b s t r a c t

In many situations, data follow a generalized linear model in which the mean of the
responses ismodelled, through a link function, linearly on the covariates. Robust estimators
for the regression parameter in order to build test statistics for this parameter, when
missing data occur in the responses, are considered. The asymptotic behaviour of the robust
estimators for the regression parameter is obtained, under the null hypothesis and under
contiguous alternatives. This allows us to derive the asymptotic distribution of the robust
Wald-type test statistics constructed from the proposed estimators. The influence function
of the test statistics is also studied. A simulation study allows us to compare the behaviour
of the classical and robust tests, under different contamination schemes. Applications to
real data sets enable to investigate the sensitivity of the p-value to themissing scheme and
to the presence of outliers.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The generalized linear model (McCullagh and Nelder, 1989), glm, is a popular technique for modelling a wide variety
of data and assumes that the observations (yi, xti ), 1 ≤ i ≤ n, xi ∈ Rk, are independent with the same distribution as
(y, xt) ∈ Rk+1 such that the conditional distribution of y|x belongs to the canonical exponential family

exp {[yθ(x)− B (θ(x))] /A(τ )+ C(y, τ )} , (1)

for known functions A, B and C . In this situation, if we denote by B′ the derivative of B, the mean µ(x) = E(y|x) = B′ (θ(x))
is modelled linearly through a known link function, g , i.e., g(µ (x)) = θ(x) = xtβ. Robust procedures for generalized linear
models have been considered, among others, by Stefanski et al. (1986), Künsch et al. (1989), Bianco andYohai (1996), Cantoni
and Ronchetti (2001), Croux andHaesbroeck (2003) and Bianco et al. (2005); see also,Maronna et al. (2006). Recently, robust
tests for the regression parameter under a logistic model were considered by Bianco and Martínez (2009).

In practice, some response variables may be missing by design (as in two-stage studies) or by happenstance. As is well
known, the methods proposed by the above mentioned authors are designed for complete data sets and problems arise
when missing observations are present. Even if there are many situations in which both the response and the explanatory
variables aremissing, wewill focus our attention on those cases in whichmissing data occur only in the responses. Actually,
missingness of responses is very common in opinion polls, market research surveys, mail enquiries, social-economic
investigations, medical studies and other scientific experiments, when the explanatory variables can be controlled. This
pattern appears, for example, in the scheme of double sampling proposed by Neyman (1938), where first a complete sample
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is obtained and then, some additional covariate values are computed since, perhaps, this is less expensive than to obtain
more response values. Hence, we will focus our attention on robust inference when the response variable may havemissing
observations, but the covariate x is totally observed.

In this paper, we consider the robust estimators for the regression parameter β introduced by Bianco et al. (2011a),
under a glm model. When there are no missing data, these estimators include the family of estimators previously studied
by several authors such as Bianco and Yohai (1996), Cantoni and Ronchetti (2001), Croux and Haesbroeck (2003) and Bianco
et al. (2005). It is shown that the robust estimators ofβ are asymptotically normally distributedwhich allows us to construct
a robust procedure to test the hypothesis H0 : β = β0 versus H1 : β ≠ β0. The paper is organized as follows. The robust
proposal is given in Section 2, the asymptotic distribution of the regression estimators and a robust Wald-type test for the
regression parameter are provided in Section 3. The results of a Monte Carlo study are summarized in Section 4, while in
Section 5 we investigate the empirical breakdown point of the different procedures. The proposed procedure is illustrated
over two real data examples in Section 6 where we carried out a sensitivity study for the p-value. An expression for the
influence function of the test is obtained in Section 7. Proofs are relegated to the Appendix.

2. Robust inference

2.1. Framework and the robust estimators

Suppose we obtain a random sample of incomplete data

yi, xti , δi


, 1 ≤ i ≤ n, of a generalized linear model where

δi = 1 if yi is observed, δi = 0 if yi is missing and (yi, xti ) ∈ Rk+1 are such that the conditional distribution F(·, µi, τ ) of yi|xi
belongs to the canonical exponential family given in (1), withµi = H(xti β) and Var(yi|xi) = A2(τ )V (µi) = A2(τ )B′′ (θ(xi))
with B′′ the second derivative of B. Let (β, τ ) denote the true parameter values andEF the expectation under the truemodel;
thus EF (y|x) = H(xtβ). In a more general situation, we will think of τ as a nuisance parameter such as an additional scale
or dispersion parameter or even, the tuning constant for the score function to be considered below. For instance, under a
Gamma regression model τ is related to the shape parameter, while for Poisson and logistic regression, τ = 1.

Let (y, xt, δ) be a random vector with the same distribution as

yi, xti , δi


. Bianco et al. (2011a) defined robust estimators

of the regression parameter whenmissing responses occur under an ignorablemissingmechanism. To bemore precise, they
assumed that y is missing at random (MAR), that is, δ and y are conditionally independent given x, i.e.,

P (δ = 1|(y, x)) = P (δ = 1|x) = p (x) . (2)

A common assumption in the literature states that infx p (x) > 0, meaning that at any value of the covariate response
variables are observed.

For the sake of completeness, we remind the definition of the simplified estimators considered in Bianco et al. (2011a)
where also a propensity score approach is considered. Through a heuristic argument based on the influence function, Bianco
et al. (2011a) showed that in some situations, such as the Gamma model to be considered below, the asymptotic variance
of the robust simplified estimators is smaller than that of the propensity score ones. For that reason, we will focus here on
test statistics based on the robust simplified estimators.

Let w1 : Rk
→ R be a weight function to control leverage points on the carriers x and ρ : R3

→ R a loss function. For
any b ∈ Rk, t ∈ R, let us define

Sn(b, t) =
1
n

n
i=1

δiρ

yi, xti b, t


w1(xi), (3)

S(b, t) = EF

δρ

y, xtb, t


w1(x)


= EF


p(x)ρ


y, xtb, t


w1(x)


. (4)

In order to define Fisher-consistent estimators, Bianco et al. (2011a) assumed that w1(·) and ρ(·) are such that, S(β, τ ) =

minb S(b, τ ). As mentioned above, the parameter t in S(b, t) plays the role of a nuisance parameter.
Letτ = τn be robust consistent estimators of τ , the robust simplified estimator β of the regression parameter is defined

as β = argmin
b

Sn(b,τ). (5)

Under mild conditions the consistency ofβ is derived in Bianco et al. (2011a).
When ρ is continuously differentiable, if we denote by Ψ (y, u, t) = ∂ρ(y, u, t)/∂u, then β and β satisfy the diff-

erentiated equations S(1)(β, τ ) = 0k and S(1)n (b,τ) = 0k, respectively, where S(1)(b, t) = EF (Ψ (y, xtb, t) w1(x)p(x)x)
and S(1)n (b, t) = (1/n)

n
i=1 δiΨ


yi, xti b, t


w1(xi)xi.

Remark 2.1.1. Two classes of loss functions ρ have been considered in the literature. One of them aims to bound the
deviances, while the other one introduced by Cantoni and Ronchetti (2001) bounds the Pearson residuals. In both cases,
the correction term needed to ensure Fisher-consistency is included in the function ρ. For a complete description,



Download English Version:

https://daneshyari.com/en/article/417475

Download Persian Version:

https://daneshyari.com/article/417475

Daneshyari.com

https://daneshyari.com/en/article/417475
https://daneshyari.com/article/417475
https://daneshyari.com

